衡量钢材力学性能的四大指标是什么 钢材常见的力学性能通俗解释归为四项,即:强度、硬度、塑性、韧性。1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生。
塑性材料和脆性材料的失效指标是什么? 塑性材料:失效指标塑性变形,用屈服强度衡量。脆性材料:失效指标断裂,用抗拉强度衡量。工程上常将延伸率占>;5%的材料称为塑性材料,而将延伸率占的材料称为脆性材料。。
分析比较塑性材料和脆性材料在拉伸压缩及扭转时的变形情况和破坏特点,并归纳这两种材料的机械性能 塑性材料在外力作用下,虽然产生较显著变形而不被破坏的材料,称为塑性材料.相反在外力作用下,发生微小变形即被破坏的材料,称为脆性材料.屈服强度表示材料将发生破坏.材料的塑性和韧性的重要性并不亚于强度.塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏.这种破坏往往无事故前兆,其危险性也就更大.脆性材料材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即破坏断裂的性质.聚合物脆性与聚合物结构及使用条件(温度、外力作用速率等)有关,柔性链高分子聚合物脆性小,韧性好;刚性链高分子则相反.
低碳钢和灰铸铁在常温静载拉伸时的力学性能和破坏形式有何异同? 塑性材料在断裂前2113变形较大,塑性指标较高5261,抵抗拉断的能4102力较好,其常用的强度指标是屈服极限,而且,一1653般来说,在拉伸和压缩时的屈服极限值相同,脆性材料在锻炼前的变形较小,塑性指标较低,其强度指标是强度极限,而且其拉伸强度远低于压缩强度。但是材料是塑性的还是脆性的,将随材料所处的温度,应变 率和应力状态等条件的变化而不同。
试比较塑性材料与脆性材料力学性能有何不同? 一、受力情况不同1、塑性材料:在外力作用下,虽然产生较显著变形而不被破坏的材料。2、脆性材料:在外力作用下(如拉伸、冲击等)仅产生很小的变形即破坏断裂的材料。二、拉压不同1、塑性材料:为拉压等强度材料,且其抗拉强度通常比脆性材料的抗拉强度高,故塑性材料一般用来制成受拉杆件2、脆性材料:抗压强度比抗拉强度高,故用来制成受压构件,而且成本较低。可分为金属材料、无机非金属材料、有机高分子材料和不同类型材料所组成的复合材料。从用途来分,又分为电子材料、航空航天材料、核材料、建筑材料、能源材料、生物材料等。三、屈服强度不同1、塑性材料:材料的塑性和韧性的重要性并不亚于强度。塑性和韧性差的材料,工艺性能往往很差,难以满足各种加工及安装的要求,运行中还可能发生突然的脆性破坏。这种破坏往往无事故前兆,其危险性也就更大。屈服强度表示材料将发生破坏。脆性材料抵抗冲击载荷的能力更差。2、脆性材料:材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即破坏断裂的性质。聚合物脆性与聚合物结构及使用条件(温度、外力作用速率等)有关,柔性链高分子聚合物脆性小,韧性好;刚性链高分子则相反。参考资料来源:-。
比较塑性材料和脆性材料的力学性能 1.低碳2113钢:低碳钢为塑性材料.开始时5261遵守胡克定律沿直线上升,比4102例极限以后变形加1653快,但无明显屈服阶段。相反地,图形逐渐向上弯曲。这是因为在过了比例极限后,随着塑性变形的迅速增长,而试件的横截面积逐渐增大,因而承受的载荷也随之增大。从实验我们知道,低碳钢试件可以被压成极簿的平板而一般不破坏。因此,其强度极限一般是不能确定的。我们只能确定的是压缩的屈服极限应力。2.铸铁:铸铁为脆性材料,其压缩图在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只确定其强度极限。σbc=Fbc/S铸铁试件受压力作用而缩短,表明有很少的塑性变形的存在。当载荷达到最大值时,试件即破坏,并在其表面上出现了倾斜的裂缝(裂缝一般大致在与横截面成45°的平面上发生)铸铁受压后的破坏是突然发生的,这是脆性材料的特征。从试验结果与以前的拉伸试验结果作一比较,可以看出,铸铁承受压缩的能力远远大于承受拉伸的能力。抗压强度远远超过抗拉强度,这是脆性材料的一般属性。
比较塑性材料和脆性材料在压缩时的变形及破坏形式有何不同? 塑性材料在压缩2113过程中当达到屈服阶段时的屈5261服现象不像拉伸4102试验那样明显,继续加载,试1653样越压越扁,横截面积不断变大,但同时试样的抗压能力也随之提高,除非材料压缩试样过份鼓出变形导致柱体表面开裂,否则塑性材料将不发生压缩破坏。脆性材料在压缩时,试样仍然在较小的变形下突然破坏,所以尽管有端面摩擦力的作用,但鼓胀效应不明显,而是当应力达到一定值后,试样在与轴线大约45~55°的方向上发生溃裂。由于脆性材料的抗剪强度低于抗压强度,故当脆性试样受压缩时,它达到剪切极限而使试样造成剪断。