这个是一阶线性微分方程的通解形式,想问下这个含有初值条件和变上限积分的形式是如何推导出来的 (X^2)dx-(Y^3)dy=0y3dy=x2dx两边积分,得y3dy=∫x2dx1/4y^4=1/3x3+c根据答案,本题应该是:(X^2)dy-(Y^3)dx=01/y3dy=-1/x2dx两边积分,得1/y3dy=∫-1/x2dx1/2 1/y2=1/x+c1/(2y2)=1/x+c扩展资料:微分方程的约束条件是指其解需符合的条件,依常微分方程及偏微分方程的不同,有不同的约束条件。常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。存在性是指给定一微分方程及约束条件,判断其解是否存在。唯一性是指在上述条件下,是否只存在一个解。针对常微分方程的初值问题,皮亚诺存在性定理可判别解的存在性,柯西-利普希茨定理[4]则可以判别解的存在性及唯一性。针对偏微分方程,柯西-克瓦列夫斯基定理可以。
一阶线性微分方程解的结构是什么 非齐方程的通解=齐方程的通解+非齐方程的特解一阶线性微分方程有通解公式的.
一阶线性微分方程的通解公式 先化简成标准式如下:dy/dx+[-1/(x-2)]*y=2*(x-2)^2 因此有:P(x)=[-1/(x-2)]Q(x)=2*(x-2)^2 代入一阶非齐次方程通解:y=exp[-∫P(x)dx]*[∫exp(∫P(x)dx)Q(x)dx+C]=exp[-。
一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式怎么理解? 一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式应用“常数变易法”求解.由齐次方程dy/dx+P(x)y=0dy/dx=-P(x)ydy/y=-P(x)dxln│y│=-∫P(x)dx+ln│C│(C是积分常数)y=Ce^(-∫P(x)dx)此齐次方程的通解是y=Ce^(-∫P(x)dx)于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为y=C(x)e^(-∫P(x)dx)(C(x)是关于x的函数)代入dy/dx+P(x)y=Q(x),化简整理得C'(x)e^(-∫P(x)dx)=Q(x)C'(x)=Q(x)e^(∫P(x)dx)C(x)=∫Q(x)e^(∫P(x)dx)dx+C(C是积分常数)y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)(C是积分常数).
一阶线性微分方程的通解公式? 形如:F(x,y,y')=0 ①的方程,被称为一阶微分方程,其中 x 是自变量,y 是 x 的未知函数,y' 是 y 的导函数。如果 函数 y=φ(x)使得,F(x,φ(x),φ'(x))=0则称 该函数 为 ① 的一个解。将 y' 从 ① 中 提取出来,表示为:y'=f(x,y)被称为 解出导函数的微分方程。进而,如果 f(x,y)=p(x)y+q(x),则 方程 变成:y'=p(x)y+q(x)②被称为 一阶线性微分方程。令 q(x)=0,得到方程:y'=p(x)y ②'被称为 一阶齐次线性微分方程,而 ② 被称为 一阶非齐次线性微分方程。为什么 ②' 叫做 齐次,而 ② 不是 呢?齐次:多项式各项 的未知元 次数 相同。因为 ②' 各项 y' 和 p(x)y 中,未知函数 y 的 次数 都是 1,即,各项未知元次数平齐;而 ② 的项 q(x)=q(x)y? 中 y 的次数 是 0,不同与 另外 两项 中 y 的次数 1,即,各项未知元次数不平齐。对于,一阶齐次线性微分方程,有,等式两边关于 x 有,再令,c=±e?,最终得到 齐次方程通解:由 常数 C 是任意实数,得到 常数 c 是不等 0 的 任意实数,而 c=0 时,y=0,因 y’=0=p(x)0=p(x)y,是方程的 解,故 常数 c 同样为 任意实数。将 齐次方程通解 中的 常数 c 变异为 x 的函数 c(x),得到:再代入 非齐次方程 ②。
一阶线性微分方程解的结构是什么 一阶线性微分方程解的结构如下:形如y'+P(x)y=Q(x)的微分方程称为一阶线性微分方程,Q(x)称为自由项。一阶,指的是方程中关于Y的导数是一。