椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程分别对应什么物理意义? 椭圆型偏微分方程:二维平面稳定场方程,如稳定浓度分布,稳定温度分布,静电场方程,无旋稳恒电流场方程,无旋稳恒流动方程等抛物型偏微分方程:一维输运方程,如扩散方程,热传导方程等双曲型偏微分方程:一维波动方程,如弦振动方程,杆振动方程,电报方程等它们是分别描述二维平面稳定场,一维输运,一维波动问题的方程
您好 我想请问一个一维热传导的偏微分的方程差分格式 能否帮忙? Grank-Nicholson方法源程序:function[u,x,t]=Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N)解方程 A u_xx=u_t,0,0初值:u(x,0)=it0(x)边界条件:u(0,t)=bx0(t),u(xf,t)=bxf(t)M:x 轴的等分段数N:t 轴的等分段数dx=xf/M;x=[0:M]*dx;dt=T/N;t=[0:N]'*dt;for i=1:M+1u(i,1)=it0(x(i));endfor n=1:N+1u([1 M+1],n)=[bx0(t(n));bxf(t(n))];endr=A*dt/dx/dx;r1=2*(1+r);r2=2*(1-r);for i=1:M-1P(i,i)=r1;(9.2.17)Q(i,i)=r2;if i>;1P(i-1,i)=-r;P(i,i-1)=-r;(9.2.17)等式左边矩阵Q(i-1,i)=r;Q(i,i-1)=r;(9.2.17)等式右边矩阵endendfor k=2:N+1b=Q*u(2:M,k-1)+[r*(u(1,k)+u(1,k-1));zeros(M-2,1)];u(2:M,k)=linsolve(P,b);(9.2.17)endu=u';例2.1 Grank-Nicholson方法求解一维抛物性方程应用实例。求满足以下条件的热传导数值解:自变量取值:边界:解:在MATLAB中编写脚本文件:A=0.5;方程系数it0=inline('sin(pi*x)','x');初始条件bx0=inline('0');bxf=inline('0');边界条件xf=2;M=25;T=0.1;N=100;[u1,x,t]=Grank_Nicholson(A,xf,T,it0,bx0,bxf,M,N);mesh(u1)xlabel('x')ylabel('t')zlabel('U')
抛物型偏微分方程的格林函数 基本解是点热源的影响函数。如果在t=0时刻在(ξ,η,ζ)处给定单位点热源,即u0(x,y,z,0)=δ(ξ,η,ζ)(δ是狄喇克函数),则当t>;0时由它引起的在全空间 R3的温度分布(即热传导方程(1)的解)称为热传导方程的基本解。通过傅里叶变换可以得到它的表达式。当t>;0时 热传导方程初值问题(1)、(2)的解可通过叠加的步骤由基本解生成对于一个有界区域Ω,若边界温度为零,在初始时刻在(ξ,η,ζ)处给定一个单位点热源u(x,y,z,0)=δ(ξ,η,ζ),当t>;0时由它引起在Ω内的温度分布(即热传导方程的解)称为热传导方程第一边值问题的格林函数,记作G(x-ξ,y-η,z-ζ,t)。根据格林公式,式中l*是l的共轭算子,任意第一边值问题(1)、(2)、(3)的解都可通过格林函数表为格林函数可以通过基本解来表示:这里时是一个定义在捙×【0,∞)上的充分光滑函数。对于一维问题或Ω为立方体等特殊区域,格林函数可以通过分离变量法或镜像法去求得。
分布参数系统的系统特点 自动控制理论中关于集中参数系统的几乎所有研究课题,包括稳定性、传递函数、能控性、能观测性、最优控制(见最优控制理论)等,也都是分布参数系统中所要研究的内容。集中参数系统用常微分方程描述,而分布参数系统是用偏微分方程描述的。为确定分布参数系统的运动,除系统的初始条件外还需要知道边界条件。下图表示墙的一维热传导控制过程。墙厚为l,热传导系数为k,热容量为c;x为沿厚度方向的坐标,t为时间变量。墙左侧(x=0处)的温度u(t)为控制量,右侧(x≥l处)为绝热壁。墙内各点的温度为y(t,x),它满足如下抛物型偏微分方程:应用拉普拉斯变换可求得传递函数式中ch(·)为双曲余弦函数。传递函数G(s,x)是超越函数且同时依赖于空间变量x和复数复量s,具有无穷多个极点,称为无穷阶传递函数在分布参数控制系统中引进反馈作用的问题也比在集中参数系统中复杂得多。由于大多数情况下控制器和检测装置都采用集中参数类型,对于分布参数系统不易实现完整的状态反馈或输出反馈,系统的能控性和能观测性都比较弱。分布参数控制系统的综合设计问题的不确定性很大,也复杂得多。
帮忙求解以下偏微分方程(急)