求二维随机变量的期望, g(x,y)代表任何一个以x,y为自变量的二元函数,但是并不排除x^2啊,g(x,y)=x^2+0*y^2,这完全可以啊.其实g(x,y)可以是任何一个表达式,哪怕是x+y+z呢,没有任何关系.只需要搞清楚x,y是需要参与积分运算的,其他字母仅仅是符号.
二维随机变量的数学期望与方差? 概率论与数理统计教材上并未概括二维随机变量和二维随机变量函数的方差,包括离散型和连续型,请问是不能…
设二维随机变量服从圆域的均匀分布,求数学期望 ^二维随机变量服从圆域x^2+y^2^2的均匀分布所以x,y的概率分布函数f(x,y)=1/S=1/(πR^2)x^2+y^2^20 其他E(Z)=∫zf(z)dz=∫(x^2+y^2)^0.5/(πR^2)dxdy=∫dθ(0~2π)∫r^2/(πR^2)dr(0~R)=2R/3
知道随机变量的分布函数如何求其数学期望? 求出密度函数然后再根据公式把xf(x)从负无穷积分到正无穷就是啦
概率论,二维随机变量,均匀分布 f(x,y)=A(x从0到1积分,这是外积分){(y从0到x积分,这是内积分)dy} dx=1A(x从0到1积分,这是外积分)xdx(A/2)(x^2)|代入x=1A/21->;A=2.即,f(x,y)=2,0
连续性二维随机变量数学期望 ①求E(X),先求出X的边缘分布密度函数fX(x)。根据定义,fX(x)=∫(-∞,∞)f(x,y)fy=∫(0,∞)e^(-x-y)dy=[e^(-x)]∫(0,∞)e^(-y)dy=e^(-x)。②按定义求期望值。E(X)=∫(0,∞)xfX(x)dx=∫(0,∞)xe^(-x)dx=1。E(X+Y)=∫(0,∞)∫(0,∞)(x+y)e^(-x-y)dxdy=∫(0,∞)∫(0,∞)xe^(-x-y)dxdy+∫(0,∞)∫(0,∞)y e^(-x-y)dxdy=2。E[e^(-x)]=∫(0,∞)[e^(-x)]fX(x)dx=∫(0,∞)e^(-2x)dx=1/2。供参考。