怎么证明分段函数在定义域内是连续的? 一般地,分段函数是由几个初等函数构成的,而初等函数在定义域的区间内是连续的。所以证明分段函数的连续性,先说明这几段函数各自在定义域的区间上连续,再证明在分段点的连续性。后者是重点,也难点,必须用单侧极限理论严格证明。亲,以简驭繁。举个简单的例子。证明:分段函数f(x)的连续性。f(x)={x,x≥0;x,x证明:显然y=x在(0,+∞)上是连续的,y=-x在(-∞,0)上是连续的.下面证明f(x)在x=0处连续。f(0+)=0,f(0-)=0,而f(0)=0,得f(0+)=f(0-)=f(0),所以f(x)在x=0处连续.于是f(x)在定义域R上连续。
证明;函数在定义域上有界的充分必要条件是它在定义域上既有上界又有下界. 函数f(x)在数集X上有界存在正数M,对任意的x∈X,恒有|f(x)|≤MM≤f(x)≤M函数f(x)在X上既有上界M,又有下界-M;函数f(x)在数集X上既有上界又有下界存在实数a≤b,对任意的x∈X,恒有a≤f(x)≤b,取M=MAX(|a|b|),M≤a≤f(x)≤b≤M,f(x)|≤M函数f(x)在X上有界.
如何证明函数在他的定义域内是连续函数 理论上,证明在定义域的开区间任意一点x0有x→x0limf(x)=f(x0).闭区间还需要证明在端点处单侧连续。实际上,如果题目没有要求用连续的定义证明。那么,指出这个函数是,所以连续。因为“一切在其定义域上是连续的。如果是,还要单独考察在分段点处的连续性。
「初等函数在其定义域内必连续」的说法是对是错,为什么? 在考研资料上看到这句话被用作证明,但总觉得怪怪的,自己的知识水平不够无法判断,求相助。
如何证明初等函数在其定义域上都是连续函数? 题主文科专业大一,书上也没有证明,很难受⊙﹏⊙ 题主文科专业大一,书上也没有证明,很难受⊙﹏⊙显示全部 ? 关注者 4 被浏览 3,672 关注问题 ? 写回答 。
证明函数在定义域内连续 函数定义域为x≠0对任意x≠0,任意ε>;0,总存在d=min{|x|(ε*x^2)/(1+ε*|x|)},当|△x|,有sin[1/(x+△x)]-sin(1/x)|2|cos{[1/(x+△x)+1/x]/2}sin{[1/(x+△x)-1/x]/2}|sin{[1/(x+△x)-1/x]/2}|[1/(x+△x)-1/x]/2|1/(x+△x)-1/x|x|/|x|x+△x|1/|x|x/△x+1|[|x|*(|x|/|△x|-1)][|x|*(|x|/d-1)]ε所以y=sin(1/x)在x≠0上连续
如何证明一个函数在其定义域是连续的 假设x为其定义域上任意一点,然后就只需要证明在x这一点上连续就可以了
一致连续函数一定有界吗(在定义域内) 一致连续函数不一定有界,y=x在(-infinity,+infinity)上一致连续,但是不是有界函数.
如何证明一个函数在其定义域是连续的
如何证明一个函数在它全部的定义域上连续?全部该怎么证? 假设x为其定义域上任意一点,然后就只需要证明在x这一点上连续就可以了啊.