ZKX's LAB

用定义证明函数在定义域里连续 证明函数在定义域内连续

2020-09-26知识31

如何证明初等函数在其定义域内处处连续? 基本初等函数的连续性,看上去很明显,要证明的话,倒还真不知道,不过如果基于已经知道基本初等函数的连续性,要证明初等函数的连续性,证明就会简单点.由连续函数的四则运算和复合运算定理内容可以证明,初等函数是由基本初等函数经过有限次的四则运算和复合运算构成的,由上述定理就可以知道,初等函数在其定义域内处处连续.

用定义证明函数在定义域里连续 证明函数在定义域内连续

怎么证明分段函数在定义域内是连续的? 一般地,分段函数是由几个初等函数构成的,而初等函数在定义域的区间内是连续的。所以证明分段函数的连续性,先说明这几段函数各自在定义域的区间上连续,再证明在分段点的连续性。后者是重点,也难点,必须用单侧极限理论严格证明。亲,以简驭繁。举个简单的例子。证明:分段函数f(x)的连续性。f(x)={x,x≥0;x,x证明:显然y=x在(0,+∞)上是连续的,y=-x在(-∞,0)上是连续的.下面证明f(x)在x=0处连续。f(0+)=0,f(0-)=0,而f(0)=0,得f(0+)=f(0-)=f(0),所以f(x)在x=0处连续.于是f(x)在定义域R上连续。

用定义证明函数在定义域里连续 证明函数在定义域内连续

如何证明一个函数在它全部的定义域上连续?全部该怎么证? 假设x为其定义域上任意一点,然后就只需要证明在x这一点上连续就可以了啊.

用定义证明函数在定义域里连续 证明函数在定义域内连续

如何证明一个函数在其定义域是连续的? 设x0为任意点,只要证明,lim(x->;x0-)f(x)=lim(x->;x0+)f(x)=f(x0)即可,(左极限=右极限=函数值)。理论上,证明在定义域的开区间任意一点x0有x→x0limf(x)=f(x0).闭区间还需要证明在端点处单侧连续。实际上,如果题目没有要求用连续的定义证明,那么,指出这个函数是初等函数,所以连续,因为“一切初等函数在其定义域上是连续的。如果是分段函数,还要单独考察在分段点处的连续性。扩展资料:函数连续的定义:lim(x->;a)f(x)=f(a)是函数连续充要条件。在这点函数可导是连续的充分条件,不是必要条件,例如绝对值函数f(x)=|x|在x=0处连续但不可导。1、连续性定义:若函数f(x)在x0有定义,且极限与函数值相等,则函数在x0连续。2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续。3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续。4、观察图像(这个不严谨,只适用直观判断)。5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的。6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的。

如何证明函数在他的定义域内是连续函数 理论上,证明在定义域的开区间任意一点x0有x→x0limf(x)=f(x0).闭区间还需要证明在端点处单侧连续。实际上,如果题目没有要求用连续的定义证明。那么,指出这个函数是,所以连续。因为“一切在其定义域上是连续的。如果是,还要单独考察在分段点处的连续性。

#初等函数#根号#定义域

随机阅读

qrcode
访问手机版