麻烦解释一下数学处理过程 建议去看《经典力学》,里面有用泛函分析处理极值问题的统一方法
费马点的证明与背景(证明要有图) 费马点的证明如图,在△ABC中,P为其中任意一点。连接AP,BP,得到△ABP。合并图册合并图册(2张)以 点B为旋转中心,将△ABP逆时针旋转 60°,得到△EBD旋转60°,且BD=BP,DBP 为一个等边三角形PB=PD因此,PA+PB+PC=DE+PD+PC由此可知当E、D、P、C 四点共线时,为PA+PB+PC最小若E、D、P共线时,等边△DBPEDB=120°同理,若D、P、C共线时,则∠CPB=120°P点为满足∠APB=∠BPC=∠APC=120° 的点。历史背景皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。之所以称业余,是由于皮耶·德·费马具有律师的全职工作。他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。著名的数学史学家贝尔(E.T.Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的。
求费马大定理的全部证明过程。 费马大定理证明过程:对费马方程x^n+y^n=z^n整数解关系的证明,多年来在数学界一直颇多争议.本文利用平面几何方法,全面分析了直角三角形边长a^2+b^2=c^2整数解的存在条件,提出对多元代数式应用增元求值.本文给出的直角三角型边长a^2+b^2=c^2整数解的“定a计算法则”;“增比计算法则”;“定差公式法则”;“a值奇偶数列法则”;是平方整数解的代数条件和实践方法;本文提出建立了一元代数式的绝对方幂式与绝对非方幂式概念;本文利用同方幂数增比性质,利用整数方幂数增项差公式性质,把费马方程x^n+y^n=z^n原本三元高次不定方程的整数解判定问题,巧妙地化为了一元定解方程问题.关键词:增元求解法 绝对方幂式绝对非方幂式 相邻整数方幂数增项差公式引言:1621年,法国数学家费马(Fermat)在读看古希腊数学家丢番图(Diophantna)著写的算术学一书时,针对书中提到的直角三角形三边整数关系,提出了方程x^n+y^n=z^n在n=2时有无穷多组整数解,在n>2时永远没有整数解的观点.并声称自己当时进行了绝妙的证明.这就是被后世人称为费马大定理的旷世难题.时至今日,此问题的解答仍繁难冗长,纷争不断,令人莫衷一是.本文利用直角三角形、正方形的边长与面积的相互关系,建立了费马方程平方。