ZKX's LAB

欧拉与龙格-库塔方法 龙格库塔方法求解常微分方程为什么会出现解误差较大

2020-09-24知识13

用改进Euler方法和四阶龙格-库塔法求初值问题 龙格-库塔(Runge-Kutta)法到目前为止,我们已经学习了多步法,例如:亚当斯-巴什福思(Adams-Bashorth)法,亚当斯-莫尔顿(Adams-Monlton)法,都是常微分。

欧拉与龙格-库塔方法 龙格库塔方法求解常微分方程为什么会出现解误差较大

求数值分析大神解题? 有问题,上知乎。知乎,可信赖的问答社区,以让每个人高效获得可信赖的解答为使命。知乎凭借认真、专业和友善的社区氛围,结构化、易获得的优质内容,基于问答的内容生产。

欧拉与龙格-库塔方法 龙格库塔方法求解常微分方程为什么会出现解误差较大

哪位大哥能帮我找到关于“龙格库塔方法”方面的文字说明啊?越详细越好。 龙格-库塔(Runge-Kutta)法到目前为止,我们已经学习了多步法,例如:亚当斯-巴什福思(AdamsBashorth)法,亚当斯-莫尔顿(Adams-Monlton)法,都是常微分方程的积分方法。它们需要在每一次迭代时重新计算一遍等式右边的结果(非线性隐含问题忽略计算多个 f(ω)值的可能性)龙格-库塔(Runge-Kutta)法是一种不同的处理,作为多级方法为人们所知。它要求对于一个简单的校正计算多个 f 的值。下面,我们列出了 3 种最流行的龙格-库塔(Runge-Kutta)法:改进的欧拉方法(精度:p=2):V a=V n+Δtf(V n,tn)2Δt)二阶格式V n+1=V n+Δtf(V a,tn+2Hevn’s 方法(p=2):这是另一种二阶格式:V a=V n+Δtf(V n,tn)V n=V n+1 Δt[f(V n,tn)+f(V a,tn+Δt)]2注意:f(Vn,tn)在运算中应该只被计算一次。四次龙格-库塔(Runge-Kutta)法(p=4):这是一个 4 阶格式。这次我们写的形式有点不同:a=Δtf(V n,tn)b=Δtf(V n+1 a,tn+12 2 Δt)c=Δtf(V n+1 b,tn+Δt)12 2d=Δtf(V n+c,tn+Δt)V n=V n+1 1(a+2b+2c+d)。6

欧拉与龙格-库塔方法 龙格库塔方法求解常微分方程为什么会出现解误差较大

龙格库塔方法求解常微分方程为什么会出现解误差较大 你好,请搜索”VisualC+常微分方程初值问题求解“可以找到相关资料例如:三、使用经典龙格-库塔算法进行高精度求解 龙格-库塔(Runge-Kutta)方法是一种在工程上应用广泛的高精度单步算法。由于此算法精度高,采取措施对误差进行抑制,所以其实现原理也较复杂。同前几种算法一样,该算法也是构建在数学支持的基础之上的。对于一阶精度的欧拉公式有:yi+1=yi+h*K1 K1=f(xi,yi)当用点xi处的斜率近似值K1与右端点xi+1处的斜率K2的算术平均值作为平均斜率K*的近似值,那么就会得到二阶精度的改进欧拉公式:yi+1=yi+h*(K1+K2)/2 K1=f(xi,yi)K2=f(xi+h,yi+h*K1)下面的具体程序实现同改进的欧拉算法类似,只需作些必要的改动,下面将该算法的关键部分代码清单列出:…for(floatx=0;x;x+0.1){r=x+expf(-x);K1=x-y[i]+1;file:/求K1K2=(x+(float)(0.1/2))-(y[i]+K1*(float)(0.1/2))+1;file:/求K2K3=(x+(float)(0.1/2))-(y[i]+K2*(float)(0.1/2))+1;file:/求K3K4=(x+0.1)-(y[i]+K3*0.1)+1;file:/求K4y[i+1]=y[i]+(float)(0.1*(K1+2*K2+2*K3+K4)/6);file:/求yi+1r=fabs(r-y[i]);file:/计算误差str.Format(\"y[%d]=fr=f\\r\\n\",i,y[i],r);i+;msg+str;}AfxMessageBox(msg);file:/。

#算法#数值分析#常微分方程

随机阅读

qrcode
访问手机版