ZKX's LAB

一座抛物线形拱桥,桥下水面 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.

2020-09-24知识12

如图,有一座抛物线形拱桥,桥下水面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10 (1)设这个抛物线的解析式为f(x)=ax^2+bx+c 由图可知f(0)=0,f(x)=f(-x)所以c=0,ax^2+bx+c=a^2-bx+c 由ax^2+bx+c=a^2-bx+c可得b=0 所以f(x)=ax^2 由已知可得,-f(10)+f(5)=3,即-100a+25a=-75a=3 解得a=-3/75,f(x)=-3/75x^2 综上 在如图所示的坐标系中求抛物线的解析式为y=-3/75x^2(2)当x=5时,y=-1,即从警戒线到拱桥顶的距离为1米 从警戒线能到拱桥顶所需时间为 1/0.2=5(小时)综上 从警戒线开始,再持续5小时才能到拱桥顶

一座抛物线形拱桥,桥下水面 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.

如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m. (1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b-3),把D、B的坐标分别代入y=ax2得:25a=b100a=b?3,解得a=?125b=?1.y=?125x2;(2)∵b=-1,拱桥顶O到CD的距离为1m,10.2=5(小时).所以再持续5小时到达拱桥顶.

一座抛物线形拱桥,桥下水面 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.

数学 解:1)抛物线过原点,又关于Y轴对称,且过A(-10,-4)设抛物线为y=ax^2,则:-4=a(-10)^2 解之得:a=-1/25 解析式为:y=-1/25x^2 2)水位从正常情况上升h米至CD位置,且CD=d。

一座抛物线形拱桥,桥下水面 如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.

有一座抛物线形拱桥,正常水位时桥下水面宽度为20m,拱顶距离水面4m.(1)在如图所示的直角坐标系中,求 (1)设该抛物线的解析式是y=ax 2,结合图象,把(10,-4)代入,得100a=-4,a=-1 25,则该抛物线的解析式是y=-1 25 x 2.(2)当x=9时,则有y=-1 25×81=-3.24,4+2-3.24=2.76(米).所以水深超过2.76米时就会影响过往船只在桥下的顺利航行.

qrcode
访问手机版