ZKX's LAB

显式欧拉法 如何利用欧拉公式证明只有五种正多面体?

2020-07-19知识16

流体力学中拉格朗日法和欧拉法有什么不同 1、含义上的区别拉格朗日法,又称随体法,跟随流体质点运动,记录该质点在运动过程中物理量随时间变化规律。欧拉法,又称流场法,是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法。2、特性上的区别拉格朗日法基本特点是追踪流体质点,以某一起始时刻每个质点的坐标位置,作为该质点的标志。欧拉法的特点是单步,显式,一阶求导精度,截断误差为二阶。基本思想是迭代,逐次替代,最后求出所要求的解,并达到一定的精度。3、作用上的区别拉格朗日法可直接运用固体力学中质点动力学进行分析,综合所有质点的运动,构成整个流体的运动。欧拉法简单地取切线的端点作为下一步的起点进行计算,当步数增多时,误差会因积累而越来越大。因此欧拉格式一般不用于实际计算。采用区间两端的函数值的平均值作为直线方程的斜率,改进欧拉法的精度。参考资料来源:-拉格朗日法参考资料来源:-欧拉法如何直观理解欧拉公式? 如果学过一点牛顿物理的话欧拉公式其实非常好理解。高中物理就够,学了向量和一点点微积分的那种。注:以…欧拉公式如何推导出来 推导过程这三个公式分别为其省百略余项的麦克劳林公式,其中麦克劳林公式为泰勒公式的一种特殊形式在e^x的展开式中把x换成±ix.所以由此度:,然后采用两式相加减的方法得到:这两个也叫做欧拉公式。将中的x取作π就得到:这个恒等式也叫做欧拉公式,它是数学里知最令人着迷的一个公式,它将数学里最重要的几个数字联系到了一起:两个超越数:自然对数的底e,圆周率π;两道个单位:虚数单位i和自然数的单位1;以及被称为人类伟大发现之一的0。数学家们评价它是“上帝创造的公式”。扩展资料:在任何一个规则球面地版图上,用 R记区域个 数,V记顶点个数,E记边界个数,则 R+V-E=2,这就是欧拉定理权,它于 1640年由 Descartes首先给出证明,后来 Euler(欧拉)于 1752年又独立地给出证明,我们称其为欧拉定理,在国外也有人称其 为 Descartes定理。R+V-E=2就是欧拉公式。参考资料:-欧拉公式欧拉法,改进欧拉法,斐波那契法原理及流程图 最低0.27元开通文库会员,查看完整内容>;原发布者:芝麻开花6152431欧拉法求微分方程方法2113说明欧拉(Euler)法是5261解常微分方程初值问题(4.1)最简单4102的数值方法,其具体做法是,将区1653间[a,b]进行N等分:,步长.并将式(4.1)写成等价的积分形式(4.2)再对式(4.2)右端积分用矩形公式计算,则有,(4.3)在式(4.3)右端取,舍去余项。则得,作为的近似值。在式(4.3)右端取,舍去余项,则得作为的近似值.一般地,在式(4.3)右端取舍去余项,则得(4.4)作为的近似值.式(4.4)为欧拉法计算公式.我们知道微分方程的解是平面上的一族积分曲线,这族曲线中过点的积分曲线就是初值问题式(4.1)的解.欧拉法的几何意义是,过点引斜率为的积分曲线的切线,此切线与直线的交点为,再过点引以为斜率的切线与直线的交点为,依此类推,从出发,作以为斜率的切线,此切线与直线交点为.于是便得到过点的一条折线,见图4.1.过的积分曲线则用此折线来代替.因此,这种方法亦称折线法.图4.1例:用欧拉法求微分方程欧拉法流程图如下:欧拉法程序如下:clear;clc;x1=0;x2=1;h=0.1;x0=0;y0=1;N=(x2-x1)/h;要计算的次数x(1)=x0;y(1)=y0;forn=1:Nx(n+1)=x(n)+h;y(n+1)=y(n)+h*(y(n)-2*x(n)/y(n));。

#欧拉公式#拉格朗日方程#数学#欧拉法

随机阅读

qrcode
访问手机版