ZKX's LAB

什么是数学期望? x数学期望

2020-07-19知识22

“数学期望”指的是什么? 数学2113期望是一种重要的数字特征,它反映随机变量平均取5261值的大4102小,是试验中每次可能结果1653的概率乘以其结果的总和。这里的“期望”一词来源于赌博,大概意思是当下注时,期望赢得多少钱。以大数据眼光看问题体现了数学期望中的大量试验出规律,不能光看眼前或特例,对一种现象不能过早下结论,要多听、多看从而获得拿个隐藏在背后的规律;以大概率眼看光问题对应数学期望中的概率加权,大概率对应的取值对最后之结果影响大,所以当有了一个目标,为了实现它,就要找一条实现起来概率最大的路径。扩展资料应用:1)随机炒股随机炒股也就是闭着眼睛在股市中挑一只股票,并且假设止损和止盈线都为10%,因为是随机选股,那么胜率=败率,由于印花税、佣金和手续费的存在,胜率=败率,最后的数学期望一定为负,可见随机炒股,长期的后果,必输无疑。2)趋势炒股趋势炒股是建立在惯性理论上的,胜率跟经验有很大关系,基本上平均胜率可以假定为60%,则败率为40%,一般趋势投资者本着赚点就跑,亏了套死不卖的原则,如涨10%止盈,跌50%止损,数学期望为EP=60%*10%-40%*50%-0.14,必输无疑。只有止损线时,趋势投资才有可能赢。但是止损线过低,就会形成频繁。什么是数学期望?如何计算? 数学期望 是试验中每次可能结果的概率乘以其结果的总和。计算公式: 1、离散型: 离散型随机变量X的取值为X1、X2、X3…Xn,p(X1)、p(X2)、p(X3)…p(Xn)、为X对应取值的概率。“数学期望”是什么意思? 例:在5件产品有4件正品,1件次品,从中任取2件,记其中含正品的个数个数为随机变量ξ,则ξ的数学期望Eξ是?急急急!数学期望(mean)是最基本的数学特征之一,运用于。数学期望的意义是什么? 数学期望mathematical expectation随机变量最基本的数学特征之一.它反映随机变量平均取值的大小.又称期望或均值.它是简单算术平均的一种推广.例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万.数学期望怎么求? 数学期望求法:1、只要把分布列表格中的数字 每一列相乘再相加 即可。2、如果X是离散型随机变量,它的全部可能取值是a1,a2,…,an,…,取这些值的相应概率是p1,p2,…,pn,…,则其数学期望E(X)=(a1)(p1)+(a2)(p2)+…+(an)(pn)+…;如果X是连续型随机变量,其概率密度函数是p(x),则X的数学期望E(X)等于函数xp(x)在区间(-∞,+∞)上的积分。主要就是这两种。希望帮到你 望采纳 谢谢 加油什么是数学期望? (小石头来尝试着回答这个问题!人类在面对复杂事物时,一般不是(也很难)谈论事物的整体,而是抽出事物的某些特征来评头论足!对于随机变量 X 也是如此!数学期望,就是 从 X 中抽出 的 数字特征 之一。数学期望可以简单的理解为:随机变量的平均值。但要真的说清楚它,我们需要从头开始:世界上,有很多可重复的实验,比如:掷骰子、抛硬币、记录雪花在操场跑道上的落点、.这些实验的全部可能结果,实验前已知,比如:抛硬币的结果={正,反}、雪花落点=[0,L](设,跑道长度=L,宽度忽略)但是,实验的具体结果却无法预估,这样的实验称为 随机试验,实验结果称为 样本,全体可能的实验结果,称为 样本空间,记为 Ω。样本空间 Ω 其实就是 普通的 集合,可以是 有限的,如:硬币两面,也可以是无限的,如:雪花落点。我们将 Ω 的子集 A 称为 事件,如果 随机试验的 结果 属于 A,我们则说 A 发生了,否则说 A 没有发生。又将,随机试验的事件的全体,记为 F。它是以 Ω 的子集和 为元素 的集族(我们习惯称 以集合为元素的集合 为集族),例如,抛硬币有:F={A?=?={ },A?={正},A?={反},A?=Ω={正,反}}虽然,我们不能知道 在每次随机实验中,每一个事件 A 是否。什么是数学期望? 数学期望也有翻译成”预期“的,在一些研究中,例如资产定价理论里,几乎是把这个数学上的”预期“和人心…x平方的数学期望和x的数学期望有什么关系 D(X)=E{[X-E(X)]^2}=E(X^2)-[E(X)]^2当D(X)=E{[X-E(X)]^2}称为变量X的方差,而称为标准差百(或均方差)度。它与X有相同的量纲。标准差是用来衡量一组数据的离散程度的统计版量。方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。扩展资料期望与方差的相关性质:1、权E(C)=C2、E(CX)=CE(X)3、E(X+Y)=E(X)+E(Y)4、当X和Y相互独立时,E(XY)=E(X)E(Y)5、设 X 与 Y 是两个随机变量,则其中协方差特别的,当X,Y是两个不相关的随机变量则数学期望的性质有哪些? 数学期望 的性质: 1、设X是随机变量,C是常数,则E(CX)=CE(X)。2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。3、设X,Y是相互独立的随机变量,则有E。

#随机变量#数学期望#数学

随机阅读

qrcode
访问手机版