ZKX's LAB

有关抛物线的所有知识点 二维抛物型方程差分算法

2020-07-19知识12

二维抛物型微分方程时间方向采用什么离散方法? 请问这个方程是不是缺了关于对时间求偏导数的项而且有没有初值条件,边值条件?热传导方程为何是抛物型方程 一维热传导方程是抛物型的,因为a12^2-a11*a22=0。书上有抛物线的准线方程是什么? 焦点在y轴上抛物线:2px=y^2它的准线为:y=-p/2焦点在x轴上抛物线:2py=x^2它的准线为:x=-p/2如何用matlab解二维的非线性偏微分方程组, 其中每个方程是抛物线型的 如何用matlab解二维的非线性偏微分方程组,其中每个方程是抛物线型的 MATLAB提供两种解决PDE问题:pdepe()函数求解般PDEs据用较通用性支持命令行形式调用 二PDE工具箱求解。有关抛物线的所有知识点 1、定义平面内,到一个定点F和一条定直线l距离相等的点的轨迹(或集合)称之为抛物线。另外,F称为\"抛物线的焦点\",l称为\"抛物线的准线。定义焦点到抛物线的准线的距离为\"焦准距\",用p表示.p>;0.以平行于地面的方向将切割平面插入一个圆锥,可得一个圆,如果倾斜这个平面直至与其一边平行,就可以做一条抛物线。2.抛物线的标准方.请问具体如何区分,抛物型偏微分方程,双曲型偏微分方程,椭圆型偏微分方程? 依次是椭圆型,双曲型,双曲型AUxx+BUxy+CUyy+.=0Δ=B^2-4ACΔ=0:抛物型Δ>;0:双曲型Δ有限差分法的差分方法的发展和应用 前面阐述了两个自变量,线性方程的差分法。实际问题常会遇到多个自变量,非线性的方程或方程组;它们还可能是混合型的偏微分方程(如机翼的跨声速绕流),其解包含着各种问断(如激波间断、接触间断等)。非线性问题的差分法求解是十分困难的。随着电子计算机的发展,在解决各种非线性问题中,差分法得到了很快的发展,并且出现了许多新的思想和方法,如守恒差分格式,时间相关法,分步法等。把定常的微分问题用一个相应的非定常问题来代替,然后用差分法解后者的初值问题,要求当时,它的稳定解为原来问题的解,这类方法叫作时间相关法。实践上,当计算时间足够大时,就能得到满足给定精度的近似解。例如拉普拉斯方程第一边值问题:可以用热传导方程的初边值问题:来代替。若用显式格式计算(27),可避免解大型代数方程组。特别是当微分方程的类型在定解区域内发生变化时,可只用一种类型来算,而使问题大大化简。这种方法在定常问题中广泛使用。缺点是达到定常解的计算时间较长,有待改进。把复杂的问题的每一时间步分解成几个中间步,例如把多维问题按坐标分解为几个一维问题,然后用差分法解这些比较简单的各中间步,最后得到原始问题的近似解,这类方法叫作。

#准线方程#matlab#抛物线

qrcode
访问手机版