ZKX's LAB

数学期望的性质推导 概率统计 数学期望性质

2020-08-13知识12

二项分布数学期望公式的推导 二项分布pk=C(n,k)p^kq^(n-k),k=0,1,2,.n由期望的定义 n n∑kpk=∑kC(n,k)p^kq^(n-k)=np∑C((n-1),(k-1))p^kq^(n-k)=k=0 k=1np(p+q)^(n-1)=np数学期望的性质有哪些? 数学期望 的性质: 1、设X是随机变量,C是常数,则E(CX)=CE(X)。2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。3、设X,Y是相互独立的随机变量,则有E。求正态分布的数学期望和方差的推导过程 不用二重积分的,可以有简单的办法的.设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2,不太好打公式,你将就看一下.于是:e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了.(1)求均值对(*)式两边对u求导:{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u.(2)方差过程和求均值是差不多的,我就稍微略写一点了.对(*)式两边对t求导:[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证.概率论中,由二维随机变量的数学期望的性质推导出来的E(aX+bY)=aE(X)+b(Y)为什么不是正确的 首先我觉得E(aX+bY)=aE(X)+bE(Y)(应该永远)是正确的。这叫 linearity of expectation 期望直(所遵循)的线性性质参见:http://en.wikipedia.org/wiki/Expected_value(under\"Linearity\")不懂 所谓“二维随机变量的数学期望的性质推导出来“是指啥。也许意思是一个特殊情况不能证明所有情况。二项分布数学期望公式的推导,x~B(n,p)期望是E(x)=np,是如何推导出来的? 二项分布pk=C(n,k)p^kq^(n-k),k=0,1,2,.n 由期望的定义 n n∑kpk=∑kC(n,k)p^kq^(n-k)=np∑C((n-1),(k-1))p^kq^(n-k)=k=0 k=1 np(p+q)^(n-1)=np

随机阅读

qrcode
访问手机版