ZKX's LAB

群中一个元素的生成群

2020-07-16知识18
设G=为整数加群,求元素3生成的子群在G中所有的右陪集 是运算可得,同构于三阶循环群. e.g=,运算封闭 设G是由6个元素构成的循环群,a是G的一个生成元,则 G的子群有那些? 子群的阶是G的阶的因子,所以子群只能是1阶,2阶,3阶和6阶的.r阶子群的生成元是a^(6/r). 设单位元是e,则1阶子群是={e},2阶子群是={e,a^3},3阶子群是={e,a^2,a^4},6阶子群是G自身. 群G的每一个元素的阶是有限的,G一定不是无限群. 既然你提到了元素的阶,那 G 一定是循环群了.则 G 的数集可以写成以下形式:A={x|x=a^k,k∈N};(a 是 G 的生成元)因为:G的每一个元素的阶是有限;那么可以设 n 是所有元素的阶数中最大的那个.如果:n. 6阶群的分类、生成元、子群和Cayley图 6阶循环群 6阶循环群的子群: 1阶子群、2阶子群、3阶子群、6阶子群各一个。END 3阶对称群 3阶对称群有两个生成元。2 矩阵表示的Cayley图。子群包含1个1阶子群、2个3阶子群... 设a是10阶群的生成元 一般结果是:设a是n阶群的生成元,则a^k的阶=n/(k,n)((k,n)表示k和n的最大公约数)。证明在大部分近世代数书上都有,要么是例题要么是习题。...br/>现在n=10,所以... 由一个元素生成的群一定是循环群吗?还有循环群一定是由一个元素生成吗? 由一个元素生成的群一定是循环群,因为循环群就是能由一个元素生成的。循环群的定义就是其中的任一元素都能表示成某个固定元素的幂。另外,循环群也是交换群。第二个问题:循环群可以由一个元素生成,这个元素称为循环群的生成元,循环群的生成元可以不唯一。 由一个元素生成的群一定是循环群吗?还有循环群一定是由一个元素生成吗? 循环群一定是由一个元素生成的 近世代数证明:群中两个不同元素生成的子群有且仅有一个公共元素 反例: 三阶群F3={0,1,2},1和2都能生成F3 近世代数证明:群中两个不同元素生成的子群有且仅有一个公共元素 近世代数证明:群中两个不同元素生成的子群有且仅有一个公共元素 近世代数证明:群中两个不同元素生成的子群有且仅有一个公共元素 反例:三阶群F3={0,1,2},1和2都能生成F3 设G有6个元素的循环群? 4个 分别是0Z6={0} 1Z6=Z6={0,1,2,3,4,5} 2Z6={0,2,4} 3Z6={0,3}

随机阅读

qrcode
访问手机版