ZKX's LAB

指数为3的子群不一定是正规子群 正规子群的正规子群仍是正规子群么?

2020-08-12知识13

我们为什么需要正规子群? 如题,或者说为什么要这么去定义这样一种结构。我已经了解了一些基本的事实,包括定义,推论,初步的一些…证明,指数是2的子群一定是不变子群。 设G是一个群,H是G的一个指数=2的子群.对任意x∈G,若x∈H,显然有xH=Hx.若x∈G\\H,则G=H∪Hx,即G分解成H的两个右陪集之并.因此Hx=G-H.同理G有左陪集分解 G=H∪xH,于是得出xH=G。证明,指数为2的子群是正规子群 指数为2的子群是正规子群的证明如下: 设H,[G:H]=2,对G中任意元a,有两种情况: 1、若a?H,则aH≠H,Ha≠H,故G有陪集分解G=H∪Ha=H∪aH,所以Ha=aH=G-H。。证明,指数是2的子群一定是不变子群. 不妨设该子群为H.H有两个不同的左陪集,由于eH=He=H.因此两个陪集一个为H,另一个为G-H.任取a属于G,1、若a属于H,则aH=Ha=H2、若a属于G-H,则aH=Ha=G-H因此H为正规子群,也就是不变子群求证不存在恰有2个指数为2的子群的群 若H、K是G的两个不同的指数为2的子群,则H、K、(H交K)都是G的正规子群,并且(G/(H交K))/(H/(H交K))=G/H从而G/(H交K)是四阶克莱因群,它有一个不同于H/(H交K)、K/(H交K)的指数为2的子群L.L在自然同态G-.基础代数问题 设G为群 H为G的子群 H在G中指数为2 求证H必为G的正规子群 只要证明Ha=aH即可,其中a不属于H,因为H在G中的指数为2,所以Ha,aH都是G的不同于H的子群,所以必有Ha=aH成立.证毕.近世代数:证明:指数是2的子群必是正规子群 证明:设H,[G:H]=2,对G中任意元a,有两种情况:若a?H,则aH≠H,Ha≠H,故G有陪集分解G=H∪Ha=H∪aH,所以Ha=aH=G-H若a∈H,则显然aH=Ha=H因此,aH=Ha对一切a∈G都成立,即H是正规子群。证毕。指数为2的子群必为正规子群 只要证明Ha=aH即可,其中a不属于H,因为H在G中的指数为2,所以Ha,aH都是G的不同于H的子群72所以必有Ha=aH成立lp证毕任一群中,指数为2的子群一定是正规的 设H是G的二阶子群,由指数为2可知对a不属于H,必有G=H并aH=H并Ha,那么aH=Ha,因此H正规正规子群的正规子群仍是正规子群么? 近世代数 证明 给一个简单说明吧,我觉得不算标准证明,然后给出命题的反例, 设任意一个群G的正规子群是H,H的正规子群是K,记K的正规化子为N(K),定义如下: 。

#子群

随机阅读

qrcode
访问手机版