ZKX's LAB

数学期望,方差的计算公式是? 数学期望dx公式

2020-08-12知识18

根据数学期望方差的不同计算公式 将第一个公式中括号内的完全平方打开得到DX=E(X^2-2XEX+(EX)^2)E(X^2)-E(2XEX)+(EX)^2E(X^2)-2(EX)^2+(EX)^2E(X^2)-(EX)^2方差与数学期望的关系公式DX=EX^2-(EX)^2 不太清楚是什么意思 举例说下。谢谢 ^将第一个公式中括号5261内的完全平方打开得到DX=E(X^41022-2XEX+(EX)^2)E(X^2)-E(2XEX)+(EX)^2E(X^2)-2(EX)^2+(EX)^2E(X^2)-(EX)^2若随机变量X的分1653布函数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。数学期望 完全由随机变量X的概率分布所确定。若X服从某一分布,也称 是这一分布的数学期望。若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数 等,。连续型随机变量的数学期望公式定义是怎么来的? 书上有给连续型随机变量的数学期望公式定义,但是我却不知道 xp(x)dx里面的dx是怎么出来的,一般积分里…

#数学期望#随机变量#方差公式#方差计算公式#数学

随机阅读

qrcode
访问手机版