简述方差分析基本原理 基本原理:就是计算其组间误差,其是服从F分布,求出F值,在依据F分布表来验证是否显著。由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是。
单因素方差分析与两因素方差分析基本原理有什么不同 一、条件原理不同1、两因素方差分析:假定因素A和因素B的效应之间是相互独立的,不存在相互关系2、单因素方差分析:假定因素所处的状态称为水平,试验中只有一个因素改变。二、假设原理不同1、两因素方差分析:假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景2、单因素方差分析:δi表示在水平Ai下总体的均值μi与总平均μ的差异,称其为因子A的第i个水平Ai的效应。三、影响不同1、两因素方差分析:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。2、单因素方差分析:每个总体的方差σ2相同;从每个总体中抽取的样本。参考资料来源:-双因素方差分析参考资料来源:-单因素方差分析
什么是方差分析?简述单因素方差分析的基本思想。 方差分析是检验多个总体均值是否相等的统计方法。它是通过检验各总体的均值是否相等来判断分类型自变量对数值型自变量是否有显著影响。单因素方差分析基本思想:数据的误差即总误差平方和分为组间平方和组内平方和,组内误差只包含随机误差。组间误差包含随机误差和系统误差,系统误差即为因素不同水平造成的误差,如果因素的不同水平对数据没有影响,系统误差为0,组间误差与组内误差经过自由度平均后的数值相比接近于1,反之,如果因素的不同水平对数据有影响,这个比值就会大于1,当它大到某种程度时,就可以说不同水平之间存在着显著差异,也就是自变量对因变量有显著影响