ZKX's LAB

求余弦函数对称轴 三角函数对称轴公式

2021-04-28知识8

三角函数对称轴、对称点怎么求? y=2[(sin2x)/2-(√3cos2x)/2]=2[sin2xcos(π/3)-cos2xsin(π/3)]=2sin(2x-π/3)对称轴:2x-π/3=kπ+π/2 所以2x=kπ+5π/6 x=kπ/2+5π/12 k∈Z 对称中心:2x-π/3=kπ 。

三角函数对称中心或对称轴怎么求 y=sinx对称2113轴为x=kπ+π/2(5261k为整数),对称中4102心为(kπ,0)(k为整数)。y=cosx对称轴为x=kπ(1653k为整数),对称中心为(kπ+π/2,0)(k为整数)。y=tanx对称中心为(kπ,0)(k为整数),无对称轴。对于正弦型函数y=Asin(ωx+Φ),令ωx+Φ=kπ+π/2 解出x即可求出对称轴,令ωx+Φ=kπ,解出的x就是对称中心的横坐标,纵坐标为0。(若函数是y=Asin(ωx+Φ)+k 的形式,那此处的纵坐标为k)余弦型,正切型函数类似。扩展资料:正弦值在 随角度增大(减小)而增大(减小),在 随角度增大(减小)而减小(增大);余弦值在 随角度增大(减小)而增大(减小),随角度增大(减小)而减小(增大);正切值在 随角度增大(减小)而增大(减小);余切值在 随角度增大(减小)而减小(增大);正割值在 随着角度的增大(或减小)而增大(或减小);余割值在 随着角度的增大(或减小)而减小(或增大)。注:以上其他情况可类推,参考第五项:几何性质。对于大于 2π 或小于等于2π 的角度,可直接继续绕单位圆旋转。在这种方式下,正弦和余弦变成了周期为 2π的周期函数:对于任何角度θ和任何整数k。周期函数的最小正周期叫做这个函数的“基本周期”。正弦。

正弦函数及余弦函数的图象的对称中心和对称轴各是什么? 正弦函数:对称轴:x=kл+л÷2,对称中心(kл,0)余弦函数:对称轴:x=kл,对称中心(kл+л÷2,0)其中k为整数л÷2即为二分之派

#余弦函数对称轴和对称中心#余弦的对称轴#求余弦函数对称轴#正弦余弦对称轴对称中心#正弦和余弦的对称轴

随机阅读

qrcode
访问手机版