ZKX's LAB

怎样读温熵图? 正卡诺循环温熵

2020-08-11知识45

怎样读温熵图? 卡诺循环在温熵图中是一个矩形,两水平线代表可逆等温过程(不可逆过程在图上画不出来),曲线下面积为两过程的吸热量(上方曲线的围成面积为正,代表吸热,下方曲线的围成面积为负,代表放热)。可逆过程的吸热量dQ=TdS,对于可逆等温,知T为常量积分时可提出积分号,故Q=T(S2-S1),可见就是线下面积。两垂直线为可逆等熵过程,也就是可逆绝热过程。很明显单独的一条线不能围成面积,故过程无热效应。可逆绝热过程中,每一微小步骤都没道有吸热或放热,因此在绝热线上的任意两点间的熵差都是零。故可逆绝热过程就是可逆等熵过程。但不可逆绝热过程熵要变化(总是增大,称为熵增原理)矩形的面积回(为正),代表一个循环中总的吸热量。由于一个循环后系统恢复到起点,即状态不变,故内能不变,说明系统在一个循环中将净的吸热量(矩形面积)转化为对外做功,功的量也是该矩形面积。利用温熵图,可以非常方便地求可逆过程中的热量。循环中的功也答容易计算。利用该图求效率,比p-V图方便多了。等熵时温度增加或减少代表着什么?答:代表可逆绝热过程中温度升高啊,升高有什么后果用绝热过程方程就知道了啊卡诺循环得到了热为什么系统熵变为零 卡诺循环经历了两个等温可逆,两个绝热可逆之后回到起始位置,因为熵是状态函数,所以熵变为零卡诺循环和熵有什么关系 设想有两个热源,一个卡诺循环从第一个热源中抽取一定量的热Q',相应的温度为T和T',则:现在设想一个任意热机的循环,在系统中从N个热源中交换一系列的热Q1,Q2.QN,并有相应的温度T1,T2,.TN,设系统接受的热为正量,系统放出的热为负量,可以知道:如果循环向反方向运行,公式依然成立.求证,我们为有N个热源的卡诺循环中引入一个有任意温度T0的附加热源,如果从T0热源中,通过j次循环,向Tj热源输送热Qj,从定义绝对温度的式中可以得出,从T0热源通过j次循环输送的热为:现在我们考虑任意热机中N个卡诺循环中的一个循环,在循环过程结束时,在T1,.,TN个热源中,每个热源都没有纯热损失,因为热机抽取的每一份热都被循环过程弥补回来.所以结果是(i)热机作出一定量的功,(ii)从T0 热源中抽取总量为下式的热:如果这个热量是正值,这个过程就成为第二类永动机,这是违反热力学第二定律的,所以正如下式所列:只有当热机是可逆的时,式两边才能相等,上式自变量可以一直重复循环下去.要注意的是,我们用Tj 代表系统接触的温度,而不是系统本身的温度.如果循环不是可逆的,热量总是从高温向低温处流动.所以:这里T代表当系统和热源有热接触时系统的温度.然而,如果循环是可逆的,系统总是趋向平衡,所以。怎样读温熵图? 卡诺循环在温熵图中是一个矩形,两水平线代表可逆等温过程(不可逆过程在图上画不出来),曲线下面积为两过程的吸热量(上方曲线的围成面积为正,代表吸热,下方曲线的围成面积为负,代表放热)。可逆过程的吸热量dQ=TdS,对于可逆等温,T为常量积分时可提出积分号,故Q=T(S2-S1),可见就是线下面积。两垂直线为可逆等熵过程,也就是可逆绝热过程。很明显单独的一条线不能围成面积,故过程无热效应。可逆绝热过程中,每一微小步骤都没有吸热或放热,因此在绝热线上的任意两点间的熵差都是零。故可逆绝热过程就是可逆等熵过程。但不可逆绝热过程熵要变化(总是增大,称为熵增原理)矩形的面积(为正),代表一个循环中总的吸热量。由于一个循环后系统恢复到起点,即状态不变,故内能不变,说明系统在一个循环中将净的吸热量(矩形面积)转化为对外做功,功的量也是该矩形面积。利用温熵图,可以非常方便地求可逆过程中的热量。循环中的功也容易计算。利用该图求效率,比p-V图方便多了。等熵时温度增加或减少代表着什么?答:代表可逆绝热过程中温度升高啊,升高有什么后果用绝热过程方程就知道了啊卡诺循环和熵有什么关系 设想有两个热源,一个卡诺循环从第一62616964757a686964616fe4b893e5b19e31333231396336个热源中抽取一定量的热Q',相应的温度为T和T',则:现在设想一个任意热机的循环,在系统中从N个热源中交换一系列的热Q1,Q2.QN,并有相应的温度T1,T2,.TN,设系统接受的热为正量,系统放出的热为负量,可以知道:如果循环向反方向运行,公式依然成立。求证,我们为有N个热源的卡诺循环中引入一个有任意温度T0的附加热源,如果从T0热源中,通过j次循环,向Tj热源输送热Qj,从定义绝对温度的式中可以得出,从T0热源通过j次循环输送的热为:现在我们考虑任意热机中N个卡诺循环中的一个循环,在循环过程结束时,在T1,.,TN个热源中,每个热源都没有纯热损失,因为热机抽取的每一份热都被循环过程弥补回来。所以结果是(i)热机作出一定量的功,(ii)从T0 热源中抽取总量为下式的热:如果这个热量是正值,这个过程就成为第二类永动机,这是违反热力学第二定律的,所以正如下式所列:只有当热机是可逆的时,式两边才能相等,上式自变量可以一直重复循环下去。要注意的是,我们用Tj 代表系统接触的温度,而不是系统本身的温度。如果循环不是可逆的,热量总是从高温向低温处流动。所以:。如何推导卡诺循环的效率公式 卡诺循环的效率ηc=1-T2/T1,由此可以看出,卡诺循环的效率只与两个热源的热力学温度有关,如果高温热源的温度T1愈高,低温热源的温度T2愈低,则卡诺循环的效率愈高。因为不能获得T1→的高温热源或T2=0K(-273℃)的低温热源,所以,卡诺循环的效率必定小于1。卡诺循环效率一致可以证明,以任何工作物质作卡诺循环,其效率都一致;还可以证明,所有实际循环的效率都低于同样条件下卡诺循环的效率,也就是说,如果高温热源和低温热源的温度确定之后卡诺循环的效率是在它们之间工作的一切热机的最高效率界限。因此,提高热机的效率,应努力提高高温热源的温度和降低低温热源的温度,低温热源通常是周围环境,降低环境的温度难度大、成本高,是不足取的办法。现代热电厂尽量提高水蒸气的温度,使用过热蒸汽推动汽轮机,正是基于这个道理。扩展资料:卡诺循环包括四个步骤:等温吸热,在这个过程中系统从高温热源中吸收热量;绝热膨胀,在这个过程中系统对环境作功,温度降低;等温放热,在这个过程中系统向环境中放出热量,体积压缩;绝热压缩,系统恢复原来状态,在等温压缩和绝热压缩过程中系统对环境作负功。卡诺循环可以想象为是工作于两个恒温热源之间的准静态。

#可逆过程#朗肯循环#卡诺循环#绝热过程#热机效率

随机阅读

qrcode
访问手机版