如何求极坐标下曲线绕极轴旋转成的立体的体积? 一.这样的题目可由柱坐标系和球坐标系来解答,柱坐标系是先在面上二重积分用极坐标然后在单积分在z轴上;球坐标系类似一个地球仪(实心的),由球上任意一点到原点的距离r和经度和纬度表示,一个实际的例子就是在地球上任意一点可由全球定位系统唯一的表示出.二.1.首先极坐标系是由极轴绕点按逆时针方向旋转,绕过的角度称为极角.2.极坐标系与直角坐标系可以互换,但极坐标系一般适用于点到定轴的距离等距的形式,比如圆柱体,圆锥体,抛物面等,因为这直接与极轴与极角联系非常容易表示,这些图形的切面都是类似圆面.如何确定r和角度?要看极轴扫过的地方是否是图形的区域来决定,然后具体作答3.在设极坐标时要看题目的图形,可能是实心面(一般题目都是这样的,因为那个r是变化的,实心面要考虑面上的任意一点),也可能是空心面(例如环,这时r就是一个定值)三.好好做上一两道题,试着用不同的方法计算解答,一般所有的积分题目至少有两种解法,比较优劣,(但一般都是球坐标较好,就是一般题型,不是你上面所说的)但是计算旋转体时用柱坐标好
拉普拉斯方程极坐标形式是怎么推导出来的 用极坐标5261、直角坐标变换公式+拉普拉斯方程得来。4102推倒过程如下:u''xx+u''yy=0x=ρ1653cosα,y=ρsinα?u/?ρ=?u/?x.?x/?ρ+?u/?y.?y/?ρ=u'x.cosα+u'y.sinα?2u/?ρ2=cosα(u''xx.x'ρ+u''xy.y'ρ)+sinα(u''yy.y'ρ+u''yx.x'ρ)cosα(u''xx.cosα+u''xy.sinα)+sinα(u''yy.sinα+u''yx.cosα)u''xx.cos2α+2u''xy.sinαcosα+u''yy.sin2αρ2?2u/?ρ2=ρ2u''xx.cos2α+2ρ2u''xy.sinαcosα+ρ2u''yy.sin2α.(1)?u/?α=?u/?x.?x/?α+?u/?y.?y/?α=u'x.(-ρsinα)+u'y.ρcosα?2u/?α2=(-ρsinα)(u''xx.x'α+u''xy.y'α)+ρcosα(u''yx.x'α+u''yy.y'α)-u'x.(ρcosα)-u'y.ρsinα(-ρsinα)(u''xx.(-ρsinα)+u''xy.ρcosα)+ρcosα(u''yx.(-ρsinα)+u''yy.ρcosα)ρ[u'x.cosα+u'y.sinα](-ρsinα)(u''xx.(-ρsinα)+u''xy.ρcosα)+ρcosα(u''yx.(-ρsinα)+u''yy.ρcosα)ρ?u/?ρρ2sin2αu''xx-2ρ2u''xysinαcosα+ρ2u''yy.cos2α-ρ?u/?ρ.(2)(1)+(2)ρ2?2u/?ρ2+?2u/?α2=ρ2u''xx(cos2α+sin2α)+ρ2u''yy.(cos2。
跪求高手,怎么在给定的极坐标方程计算其曲率? 极坐标中,曲率的公式为:K=|ρ^2+2ρ'^2-ρρ''|/(ρ^2+ρ'^2)^(3/2)。(1)对e69da5e887aa62616964757a686964616f31333431356132于差分几何上的应用,请参阅Cesàro方程;(2)对于地球的曲率半径(由椭圆椭圆近似),请参见地球的曲率半径;(3)曲率半径也用于梁的弯曲三部分方程中;(4)曲率半径(光学)。(5)半导体结构中的应力:扩展资料:曲率是几何体不平坦程度的一种衡量。平坦对不同的几何体有不同的意义。本文考虑基本的情况,欧几里得空间中的曲线和曲面的曲率。一般意义下的曲率,请参照曲率张量。在动力学中,一般的,一个物体相对于另一个物体做变速运动时也会产生曲率。这是关于时空扭曲造成的。结合广义相对论的等效原理,变速运动的物体可以看成处于引力场当中,因而产生曲率。按照广义相对论的解释,在引力场中,时空的性质是由物体的“质量”分布决定的,物体“质量”的分布状况使时空性质变得不均匀,引起了时空的弯曲。因为一个物体有质量就会对时空造成弯曲,而你可以认为有了速度,有质量的物体变得更重了,时空弯曲的曲率就更大了。在物理中,曲率通常通过法向加速度(向心加速度)来求,具体请参见法向加速度。曲线上点M处的曲率的。