ZKX's LAB

数据挖掘与数据分析的主要区别是什么? 数据挖掘数据分析师

2020-08-11知识32

数据分析师和数据挖掘工程师的区别? 2016应届毕业生,前几天去参加了iPIN(爱拼信息公司)的宣讲会。听了大牛杨洋的精彩演讲,受益良多。在笔…数据挖掘,数据分析与数据统计有什么区别 严格讲是有区别的:数据统计,其实就是把数加减起来,得个结果那么简单。统计报表就是干这个的。数据分析,可以理解成弄一个趋势图之类的。数据挖掘,就是得出数据之外的东西。类似一份老张的生活数据,结果得出老李家有只猫。但现实中,往往因为技术和商务的原因,这些被人为地混淆之。再加上客户往往也是外行,所以,很多时候说是做数据挖掘,其实做的数据分析,甚至数据统计。总之,现实中就是别去较真。程序员或者数据分析师,数据挖掘工程师必须要终身学习吗? 目前在一个双非末流一本读数据科学,我一向很咸鱼的,也挺愿意当一条混得还行的咸鱼,真的不喜欢努力。数据分析师与数据挖掘工程师,分别有什么从业要求? 谢邀,之前我回答过另一个问题,现在我把答案复制过来,仅供参考。我上一份工作是数据分析师,现在的工作是数据挖掘工程师,因此我可以以我自己的实际经验来回答这个问题。数据分析师和数据挖掘工程师,同属于数据领域的洞察者,但是两者的工作内容却有着不小的区别。对于一个数据分析师来说,最重要的并不是编程技能,而是逻辑分析能力、业务理解能力、报告展示能力等。数据分析师:数据分析师使用的主要工具可以是编程,但并非必要;因为现在已经存在大量的强大、易用的数据分析工具,比如Excel、Tableau、SPSS、SAS等,即使你没有编程能力,仍然能胜任绝大多数的数据分析工作;但是相对于数据挖掘工程师,你还额外需要一些能力,比如数据可视化的能力、写数据报告的能力、在领导甚至许多人面前做报告、讲演的能力等;同时,由于现在互联网公司都在讲大数据,数据的存储基本上在各种大数据平台和数据库中,因此你有必要掌握Hive、HDFS、MySQL等的使用,SQL的熟练掌握是不可避免的。数据分析师一般有两种,一种是面向业务的,主要对各业务线、产品经理、运营、各部门领导的需求提供支持,帮助他们分析业务、了解业务,发掘出业务中的问题并提供解决方案;另一种是偏宏观的。数据挖掘与数据分析的主要区别是什么? 不请自来。同样的问题回答过一次 数据分析、数据挖掘、数据统计、OLAP 之间的差异是什么?直接搬运过来好了。。CDA数据分析师官网 ?www.cda.cn 欢迎来撩~数据分析师,数据挖掘师,大数据工程师,三者的工作有何区别? 例如,在 http:// Indeed.com 上,如果输入“analyst sql”作为关键字,您将找到许多不同的职位,如 Performance Analyst,Healthcare Data Analyst 和 Demand Planning 。数据挖掘师与数据分析师有什麽区别和联系? 1、“数据分析”的重点是观察数据,而“数据挖掘”的重点是从数据中发现“知识规则”KDD(Knowledge Discover in Database);2、“数据分析”得出的结论是人的智能活动结果,而“数据挖掘”得出的结论是机器从学习集(或训练集、样本集)发现的知识规则;3、“数据分析”得出结论的运用是人的智力活动,而“数据挖掘”发现的知识规则,可以直接应用到预测。4、“数据分析”不能建立数学模型,需要人工建模,而“数据挖掘”直接完成了数学建模。如传统的控制论建模的本质就是描述输入变量与输出变量之间的函数关系,“数据挖掘”可以通过机器学习自动建立输入与输出的函数关系,根据KDD得出的“规则”,给定一组输入参数,就可以得出一组输出量。数据分析师和数据挖掘工程师的区别是什么? 数据分析师岗位重在“分析”,数据挖掘工程师岗位重点是要“挖掘”。1、【数据分析师】:基于业务,通过数据分析手段发现和分析业务问题,为决策作支持。一般招聘这类岗位的公司规模都不会太小,人数可能不是一个唯一的衡量指标,但是业务规模肯定比较大,反而言之,业务规模太小的公司就没什么可分析的了。2、此岗位重在“分析”,首先要有一定的数据灵敏度和数学底子,知道在什么样的数据规模下,需要看什么样的数据指标。了解常规的数据挖掘算法,可以使用一些工具得到预期的结果。当然用工具的话是需要公司系统支持一些数据分析软件的,SPSS啊,Clementine什么的,如果没有,说句难听的,弄个Excel表格在有些公司也叫数据分析师。当然有些数据分析师Excel玩儿的可以很溜,可以用Excel模拟一个CTR预估算法的迭代过程。3、【数据挖掘工程师】:偏技术,通过建立模型、算法、预测等提供一些通用的解决方案,当然也有针对某业务的。岗位重点是要“挖掘”,所以对于人的要求就是要熟悉挖掘的方法,挖掘的工具,或者至少知道在什么平台应该用什么工具,面对什么样的需求应该怎么解。4、简单来说就是负责接收需求然后产出结果,大部分公司的数据挖掘工程师都比较被动,。

#研发工程师#数据挖掘算法#数据分析#数据挖掘#商务智能

随机阅读

qrcode
访问手机版