ZKX's LAB

将图1的正四棱锥abcde 如图,正四棱锥中P-ABCD,点E,F分别在棱PA,BC上,且AE=2PE,

2021-04-28知识8

将图1的正四角锥ABCDE沿着其中的四个边剪开后,形成的展开图为图2.四个边可为AC、AD、BC、DE.故选:A.

如图,多边形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD。 如图,多边形ABCDE中,∠ABC=90°,AD∥BC,△ADE是正三角形,AD=2,AB=BC=1,沿直线AD将△ADE折起至△ADP的位置,连接PB,BC,构成四棱锥P-ABCD,使得∠PAB=9.

什么是棱锥 在几何学上,棱锥又称角锥,是三维多面体的一种。由多边形各个顶点向它所在的平面外一点依次连直线段而构成。多边形称为棱锥的底面。随着底面形状不同,棱锥的称呼也不相同,依底面多边形而定,底面是正方形的棱锥称为方锥,底面为三角形的棱锥称为三棱锥,底面为五边形的棱锥称为五棱锥。扩展资料:棱锥截面性质定理及推论定理:如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比。推论1:如果棱锥被平行于底面的平面所截,则棱锥的侧棱和高被截面分成的线段比相等。推论2:如果棱锥被平行于底面的平面所截,则截得的小棱锥与原棱锥的侧面积之比也等于它们对应高的平方比,或它们的底面积之比。侧棱长都相等的棱锥,它的顶点在底面内的射影是底面多边形的外接圆的圆心(外心),同时侧棱与底面所成的角都相等。侧面与底面的交角都相等的棱锥,它的二面角都是锐二面角,所以顶点在底面内的射影在底多边形的内部,并且它到各边的距离相等即为底多边形的内切圆的圆心(内心),且各侧面上的斜高相等。如果侧面与底面所成角为α,则有S底=S侧cosα。如图画出了射影是外心和内心的情况。参考资料。

#将图1的正四棱锥abcde

随机阅读

qrcode
访问手机版