ZKX's LAB

梯度功能材料在哪些行业广泛应用? 半导体超晶格制备

2021-04-28知识2

请问半导体的发展历程是怎样的?和它的前景? 更多精彩内容,请登录维库电子通(wiki.dzsc.com) 常见的半导体材料现状及趋势 1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微。

分子束外延法的定义 分子束外延是一种新的晶体生长技术,简记为MBE。其方法是将半导体衬底放置在超高真空腔体中,和将需要生长的单晶物质按元素的不同分别放在喷射炉中(也在腔体内)。由分别加热到相应温度的各元素喷射出的分子流能在上述衬底上生长出极薄的(可薄至单原子层水平)单晶体和几种物质交替的超晶格结构。分子束外延主要研究的是不同结构或不同材料的晶体和超晶格的生长。该法生长温度低,能严格控制外延层的层厚组分和掺杂浓度,但系统复杂,生长速度慢,生长面积也受到一定限制。分子束外延是50年代用真空蒸发技术制备半导体薄膜材料发展而来的。随着超高真空技术的发展而日趋完善,由于分子束外延技术的发展开拓了一系列崭新的超晶格器件,扩展了半导体科学的新领域,进一步说明了半导体材料的发展对半导体物理和半导体器件的影响。分子束外延的优点就是能够制备超薄层的半导体材料;外延材料表面形貌好,而且面积较大均匀性较好;可以制成不同掺杂剂或不同成份的多层结构;外延生长的温度较低,有利于提高外延层的纯度和完整性;利用各种元素的粘附系数的差别,可制成化学配比较好的化合物半导体薄膜。

超晶格量子效应是? 1969年,著名的物理学家江崎与其合作者朱兆祥首次提出了半导体超晶格的新概念,并于1970年首次在砷化镓半导体上制成了超晶格结构,由此揭开了超晶格、量子阱、量子线和量子点微结构等一类低维材料研究的序幕.迄今为止,这一领域的研究已经取得了令世人瞩目的重大进展,在半导体科学技术发展史上写下了光辉灿烂的一页,留下了浓墨重彩的一笔.尤其值得一提的是,美籍华裔科学家崔琦和德国科学家霍斯特·施特默2人,因于1982年发现了具有高电子迁移率的GaAs/AlAs超晶格材料的调制掺杂异质结中的电子,会在超低温和强磁场条件下形成具有某种特异性的量子流体,并在1年之后,由美国科学家罗伯特·劳克林对这一重大发现作出了理论解释,而共同获得了1998年的诺贝尔物理学奖.此后不久,高电子迁移率晶体管(HEMT)就被设计并制作出来了.目前,这种器件已经发展到由多种异质结构材料和各种结构形式制备的具有各种逻辑功能的HEMT大规模集成电路,并初步用于现代通信和计算机系统.这一事实充分显示了半导体超晶格材料在半导体科学技术中所占据的显赫地位。

#半导体超晶格制备

随机阅读

qrcode
访问手机版