ZKX's LAB

图像噪声的噪声特点 分析不同噪声对图像的影响吗

2021-04-27知识8

如何根据噪声类型选择不同的去噪方法; 图像在采集和传输中会不可避免的受到噪声的污染,影响人们对图像的理解和分析处理。图像去噪的目的就是滤除噪声,减少噪声的影响,使图像信息更加真实的呈现。本文简单介绍了图像噪声的分类及常用的图像的去噪方法,对传统的中值滤波方法进行了分析,并针对传统的中值滤波方法存在的不足,提出自适应中值滤波方法,并在MATLAB软件上进行了编程和仿真。结果表明自适应中值滤波方法对噪声密度较大的图像比传统中值滤波有更好的滤波效果。本文第一章对数字图像处理常用方法,图像噪声的分类和主要去噪方法等基础知识做了介绍,并对MATLAB软件发展主要组成和功能进行了概括,同时对用于图像处理的MATLAB主要函数进行了介绍。第二章对图像的中值滤波方法的原理和算法进行介绍,并分析其不足,提出自适应中值滤波器的设计。第三章对自适应中值滤波器的原理和设计算法做了分析,并在MATLAB软件上进行了编程和仿真,对处理结果进行比对、归纳。最后,对本论文做了总结。

图像噪声的噪声概念 目前大多数数字图像系统中,输入图像都是采用先冻结再扫描方式将多维图像变成一维电信号,再对其进行处理、存储、传输等加工变换。最后往往还要再组成多维图像信号,而图像噪声也将同样受到这样的分解和合成。在这些过程中电气系统和外界影响将使得图像噪声的精确分析变得十分复杂。另一方面图像只是传输视觉信息的媒介,对图像信息的认识理解是由人的视觉系统所决定的。不同的图像噪声,人的感觉程度是不同的,这就是所谓人的噪声视觉特性课题。图像噪声在数字图像处理技术中的重要性越来越明显,如高放大倍数航片的判读,X射线图像系统中的噪声去除等已经成为不可缺少的技术步骤。下面就是对图像噪声基本知识的介绍:

什么是噪音图像 图像噪声噪声可以理解为“妨碍人们感觉器官对所接收的信源信息理解的因素”。例如一幅黑白图片,其平面亮度分布假定为,那么对其接收起干扰作用的亮度分布 即可称为图像噪声。活动的黑白电视图像噪声可以 表示为。彩色电视图像噪声可以表示为。但是,噪声在理论上可以定义为“不可预测,只能用概率统计方法来认识的随机误差”。因此将图像噪声看成是多维随机过程是合适的,因而描述噪声的方法完全可以借用随机过程的描述,即用其概率分布函数和概率密度分布函数。但在很多情况下,这样的描述方法是很复杂的,甚至是不可能的。而实际应用往往也不必要。通常是用其数字特征,即均值方差,相关函数等。因为这些数字特征都可以从某些方面反映出噪声的特征。大多数数字图像系统中,输入图像都是采用先冻结再扫描方式将多维图像变成一维电信号,再对其进行处理、存储、传输等加工变换。最后往往还要在组成多维图像信号,而图像噪声也将同样受到这样的分解和合成。在这些过程中电气系统和外界影响将使得图像噪声的精确分析变得十分复杂。另一方面图像只是传输视觉信息的媒介,对图像信息的认识理解是由人的视觉系统所决定的。不同的图像噪声,人的感觉程度是不同的,这就是所谓人的。

#分析不同噪声对图像的影响吗

随机阅读

qrcode
访问手机版