高斯分布的概率密度函数对协方差矩阵求导 题主直接在上搜bai索“多元正态分布 题主直接在上搜bai索“多元正态分布 最大似然估计”就可以找到一些讲推导的网页;但大部du分都是用矩阵代数的办法做的,即用。
请问两个随机变量XY不独立,他们的协方差cov(X,Y)已知,请问怎么计算两者乘积的期望E(XY)? 利用协方差的公式啊COV(X,Y)=E[(X-E(X))(Y-E(Y))]=EXY-EX*EY那么EXY=COV(X,Y)+EX*EYEX,EY,COV(X,Y)都已知,就可以算出来了。如果X与Y是统计独立的,那么二者之间的协方差就是0,因为两个独立的随机变量满足E[XY]=E[X]E[Y]。反过来并不成立。即如果X与Y的协方差为0,二者并不一定是统计独立的。扩展资料:如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。协方差的性质:1、Cov(X,Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。协方差作为描述X和Y相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。当两个变量相关时,用于评估它们因相关而产生的对应变量的影响。当多个变量独立时,用方差来评估这种影响的差异。当多个变量相关时,用协方差来评估这种影响的差异。参考资料来源:—协方差
二维分布求期望和协方差