相关函数的协方差的性质 协方差的性质:62616964757a686964616fe4b893e5b19e313334313532391、Cov(X,Y)=Cov(Y,X);2、Cov(aX,bY)=abCov(X,Y),(a,b是常数);3、Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)。由协方差定义,可以看出Cov(X,X)=D(X),Cov(Y,Y)=D(Y)。协方差函数定义为:若X(t)=Y(t)+i*Z(t),Y,Z为实过程,则称X(t)为复随机过程,相关函数定义为:扩展资料协方差反映了两个变量之间的相关程度:协方差是两个变量与自身期望做差再相乘,然后对乘积取期望。也就是说,当其中一个变量的取值大于自身期望,另一个变量的取值也大于自身期望时,即两个变量的变化趋势相同,此时,两个变量之间的协方差取正值。反之,即其中一个变量大于自身期望时,另外一个变量小于自身期望,那么这两个变量之间的协方差取负值。当x与y变化趋势一致时,两个变量与自身期望之差同为正或同为负,其乘积必然为正,所以其协方差为正;反之,其协方差为负。所以协方差的正负性反映了两个变量的变化趋势是否一致。再者,当x和y在某些时刻变化一致,某些时刻变化不一致时,在第一个点,x与y虽然变化,但是y的变化幅度远不及x变化幅度大,所以其乘积必然较小。在第二个点,x与y变化一致且变化幅度都很。
最低0.27元开通文库会员,查看完整内容>;原发布者:lyj7712edu相关函数的性质一、相关函数的性质二、应用举例一、相关函数的性质假设X(t)和Y(t)是平稳相关过程,RX()、RY()和RXY()分别是它们的自相关函数和互相关函数.性质12RX(0)E[X2(t)]ΨX0.平稳过程X(t)的“平均功率”性质2RX()RX(),即RX()是的偶函数.注意:互相关函数既不是奇函数,也不是偶函数,但满足RXY()RYX(),实际问题中只需计算或测量RX(),RY(),RXY()和RYX()在0的值.性质3关于自相关函数和自协方差函数有不等式2RX()RX(0)和CX()Cx(0)X.此式表明:自相关(自协方差)函数都在0处取到最大值.类似的,可推得e68a84e8a2ad7a686964616f31333433623764以下有关互相关函数和互协方差函数的不等式:RXY()RX(0)RY(0),2CXY()CX(0)CY(0).2性质4RX()是非负定的.n即对于任意数组t1,t2,tnT和任意实值函数g(t)都有RX(titj)g(ti)g(tj)0.i,j1说明由于任一连续函数,只要具有非负定性,那么该函数必是某平衡过程的自相关函数.所以对于平稳过程而言,自相关函数的非负定性是最本质的.证明根据自相关函数的定义和均值运算性质有RX(titj)g(ti)g(tj)i,j1E[X(ti)X(tj)]g(ti)g(tj)i,j1nn
协方差的公式是什么?有什么性质? 定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为,这里 分别表示两变量系列的平均值.协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况.定义2:度量两个随机变量协同变化程度的方差.