如图,在三棱柱ABC-A (1)证明:在三棱柱ABC-A1B1C1中,侧棱BB1垂直于底面ABC,所以BB1⊥AB,又AB⊥BC,BB1∩BC=B,则有AB⊥平面B1BCC1;(2)证法一、取AB中点G,连接EG,FG,由于E、F分别为A1C1、BC的中点,所以FG∥AC,FG=12AC,因为AC∥A1C1,且AC=A1C1,所以FG∥EC1,且FG=EC1,所以四边形FGEC1为平行四边形,所以C1F∥EG,又因为EG?平面ABE,C1F?平面ABE,所以C1F∥平面ABE;证法二、取AC中点H,连接FH和C1H,因为F,H分别是BC,AC的中点,所以HF∥AB,HF?平面ABE,AB?ABE,所以HF∥平面ABE,又由AE∥C1H,也可得到C1H∥平面ABE,又C1H∩HF=H,所以平面C1HF∥平面ABE,因为C1F?平面C1HF,所以C1F∥平面ABE.
如图,在正三棱柱ABC-A 证明:(1)因为三棱柱ABC-A1B1C1是正三棱柱,所以C1C⊥平面ABC,又AD?平面ABC,所以C1C⊥AD,又点D是棱BC的中点,且△ABC为正三角形,所以AD⊥BC,因为BC∩C1C=C,所以AD⊥平面BCC1B1,又因为DC1?平面BCC1B1,所以AD⊥C1D;(6分)(2)连接A1C交AC1于点E,再连接DE.因为四边形A1ACC1为矩形,所以E为A1C的中点,又因为D为BC的中点,所以ED∥A1B.又A1B?平面ADC1,ED?平面ADC1,所以A1B∥平面ADC1.(14分)
如图,在正三棱柱ABC-A1B1C1中,点D在棱BC上,AD⊥C1D, 分析:1)正三棱柱ABC-A1B1C1中,M是棱BB1的中点,能够推导出OM⊥平面AA1C1C,由此能够证明平面AMC1⊥平面AA1C1C.(2)在正三棱柱ABC-A1B1C1中,M是棱BB1的中点,E是B1C1的中点,故AD∥A1E,所以A1E∥平面ADC1,由此能够证明A1E∥l.解答:解:(1)∵正三棱柱ABC-A1B1C1中,M是棱BB1的中点,AB=A1B1=B1C1,BM=B1M,∠ABM=∠C1B1M,AM=C1M.AMC1是等腰三角形.取AC1的中点O,CC1的中点M,连接MO,OP,MP,则MO⊥AC1,OP⊥CC1,MP⊥CC1,CC1⊥平面OPM,OM?平面OPM,∴CC1⊥OM.CC1∩AC1=C1,OM⊥平面AA1C1C,OM?平面AMC1,∴平面AMC1⊥平面AA1C1C.(2)∵在正三棱柱ABC-A1B1C1中,M是棱BB1的中点,E是B1C1的中点,AD∥A1E,AD?平面ADC1,A1E?平面ADC1,A1E∥平面ADC1,过A1E作平面α交平面ADC1于l,A1E∥l.希望帮到你