怎么将极坐标系转化为直角坐标系 将极坐标系中的曲线方程转化为直角坐标系中的,如 y=rsinax=rcosa是极坐标下P(x,y)点的轨迹方程,将原式两边平方可得y2=r2sin2a,x2=r2cos2a两式再相加得x2+y2=r2这就是直解角坐标系中P点的轨迹方程.
知道一个点在直角坐标系的系数 D=(-3.1, 2.6 , 3); 如果要把这个点用圆柱坐标系的系数表达求详细过程 p=√[(-3.1)2+2.62]=4.0459856648≈4.0。百θ=180°-arctan(2.6/3.1)≈140°则圆柱坐标度系的坐版标为(4.0,140°,权3)。答案不同可能是坐标系的起点不同。
球坐标系中直角坐标如何转化为球坐标 球坐标系(r,θ,φ)与直角坐标系(x,y,z)的转换关系:x=rsinθcosφ;y=rsinθsinφ;z=rcosθ。