如图,点P是反比例函数 设点P的坐标为(x,y).P(x,y)在反比例函数y=1x的图象上,xy=1,OPM的面积=12xy=12,故选D.
如图,动点P在反比例函数y=-2/x(x<0)的图像上运动,点A点B分别在X轴,Y轴上,且OA=OB=2 如图,动点P在反比例函数y=-2/x(x)的图像上运动,点A点B分别在X轴,Y轴上,且OA=OB=2,PM⊥X轴于M,交AB于E,PN⊥Y轴于点N,交AB于F:(1)当点P的纵坐标为5/3时,连OE、OF,求E、F两点的坐标及△EOF的面积;(2)动点P在函数y=-2/x(x)的图像上移动,它的坐标设为P(a,b)(其中-2<a,0<b,且|a|≠|b|)其他条件不变,判断以AE、EF、BF为边的三角形的形状,并证明你的结论.(1)∵动点P在反比例函数y=-2/x(x)的图像上,且点的纵坐标是5/3,5/3=-2/x,解得X=-6/5,即P点坐标为(-6/5,5/3);OA=OB=2A点坐标为(-2,0)B点坐标为(0,2)设直线AB的解析式为y=kx+b,根据点A、点B的坐标即可得到直线AB的解析式为y=x+2PM⊥X轴于M,交AB于E,PN⊥Y轴于点N,交AB于FE,F都在直线上,且F点的纵坐标也是5/3,将y=5/3代入y=x+2即可求出x=-1/3,即 F点的坐标为(-1/3,5/3),由P点的横坐标和E点的横坐标相等,即可得出E点的横坐标为-6/5,将X=-6/5代入y=x+2即可得到y=4/5∴E点的坐标为(-6/5,4/5),由点到直线的距离公式可得,O(0,0)点到直线AB的距离为h=2/√2=√2EF|=√[(13/15)2+(13/15)2]=13√2/15那么SΔOEF=1/2|EF|*h=13/15如果没学过点到直线的距离公式,设PE与X轴的交点为G(-6/5,0),也可根据SΔ。
如图,点P是反比例函数y= (1)∵P是点P是反比例函数y=k1x(k1>0,x>0)图象上一动点,∴S矩形PBOA=k1,∵E、F分别是反比例函数y=k2x(k2且|k2|)的图象上两点,∴S△OBF=S△AOE=12|k2|∴四边形PEOF的面积S1=S矩形PBOA+S△O.