棱台的特征 1、正棱台的2113侧棱相等,侧面是全等的等腰梯形。各5261等腰梯形4102的高相等,它叫做正棱台的1653斜高;2、正棱台的两底面以及平行于底面的截面是相似正多边形;3、正棱台的两底面中心连线、相应的边心距和斜高组成一个直角梯形;两底面中心连线、侧棱和两底面相应的半径也组成一个直角梯形。4、棱台各棱的反向延长线交于一点。5、棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台。6、下底面和上底面:原棱锥的底面和截面 分别叫做棱台的下底面和上底面。7、侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。8、侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。9、顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。棱台的表示:用表示底面的各顶点的字母表示。如:棱台ABCD-A’B’C’D’。底面是三角形,四边形,五边形-的棱台分别叫三棱台,四棱台,五棱台。扩展资料棱台的体积取决于两底面之间的距离(棱台的高),以及原来棱锥的体积。设h为棱台的高,为棱台的上下底面积,V为棱台的体积。由于棱台是由一个平面截去棱锥的一部分(也就是和原来棱锥相似的一个小棱锥)得到,所以计算体积的时候,可以先算出。
正三棱台的高怎么求? 例1.正三棱台ABC-A1B1C1两底面边长AB=6,A1B1=2,侧面和下底面所成的二面角为60 °,求棱台的高、侧棱、侧棱和底面所成角的正切值.分析:根据正棱台的性质,只要过棱台的顶点A1作底面ABC的垂线A1D,D必在∠A的平分线上.
棱台不具备的特点是两底面相等,选A,两个底面是相似,但不相等其他3个选项都是对的,即棱台有这些特点.