ZKX's LAB

柱坐标系三维拉普拉斯方程中,如果r=0,方程的形式是什么样的? 圆柱坐标系下的拉普拉斯方程

2021-04-27知识10

传热学 圆柱坐标系下的导热微分方程的推导方法 圆柱坐标系下的导热微分方程与直角坐标系中的导热微分方程一样.直角坐标系用T=T(t,X,Y,Z);圆柱坐标系用T=T(t,R,J,Z).然后根据傅立叶定律列出R、J、Z方向上的导入与导出的热量的六个微分方程;然后根据能量守恒定律列出热平衡式,经整理即可得.这样及可得(不论稳态否、有无内热源否,均可根据内热源生成热及内能的增量列出方程,很易理解)

拉普拉斯方程的极坐标形式是怎么推导的?直角坐标下的拉普拉斯方程为:(?。 拉普拉斯方程的极坐标形式是怎么推导的?直角坐标下的拉普拉斯方程为:(?.拉普拉斯方程的极坐标形式是怎么推导的?直角坐标下的拉普拉斯方程为:(?2/?x2)+(?2/?y2)f。

最低0.27元开通文库会员,查看完整内容>;原发布者:zhangjinyu215柱坐标和球坐标系下拉普拉斯算符表达式的简单推导[摘要]:本文采用多元微积分,利用球坐标与柱坐标、柱坐标与直角坐标变量转换的相同关系,以拉普拉斯算符为例,简化了在柱坐标和球坐标系下拉普拉斯算符表达式的推导。本文提出了此法在柱坐标和球坐标系下梯度、旋度、散度算符表达式的推导中32313133353236313431303231363533e58685e5aeb931333433623765的适用性,适合广大非数学专业本科生学习与掌握。[关键词]:拉普拉斯算符;球坐标;柱坐标;多元微积分[中图分类号]:O13[文献标识码]:A[文章编号]:1672-1452(2015)*-*-041引言在材料科学基础、近代物理、量子力学等课程的内容中,菲克第二定律和薛定谔方程中的拉普拉斯算符在柱坐标系和球坐标系中的表达式十分重要。在近代物理的课本[1]和材料科学基础的课本[2]上,提到了拉普拉斯算符在柱坐标和球坐标系下的表达式,但没有给出具体的推导过程。在电动力学课本[3]中,这方面的内容是通过引入“正交曲线坐标系”得出关于拉普拉斯算符的一般结论,再推导出球坐标和柱坐标下的表达式。但是利用正交曲线坐标系的一般结论进行推导比较抽象,对于非数学专业的同学。

#圆柱坐标系下的拉普拉斯方程

随机阅读

qrcode
访问手机版