如何检验一组数据是否符合正态分布 1 方法 性质1:设X是一个随机变量,其分布函数为F(x),则Y=F(X)服从在〔0,1〕的均匀分布。性质2:设X1,K,Xn是某个分布的一个简单样本,其分布函数为F(x),由性质1可知,在。
最低0.27元开通文库会员,查看完整内容>;原发布者:happywangsi如何检验数据是否服从正态分布一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。以上两种方法以Q-Q图为佳,效率较高。3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。4、箱式图判断方法:观测离群值和中位数。5、茎叶图类似与直方图,但实质不同。二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公636f70793231313335323631343130323136353331333433623736式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。两种检验同时得出U0.05的结论时,才可以认为该组资料服从正态分布。由公式可见,部分文献中所说的“偏度和峰度都接近0…可以认为…近似服从正态分布”并不严谨。2、非参数检验方法非参数检验方法包括Kolmogorov-。
t检验之前一定要做正态检验吗 t检验只是大致要求样本服从正态分布,只要你的样本不是严重背离正态分布,那么t检验的结果都是可靠的.你仅需要使用条形图看看你的样本有没有严重背离正态分布就可以了.其理由是,根据中心极限定理,无论样本来自何种分布.