ZKX's LAB

光滑曲线是至少几阶可导 什么是光滑曲线!说在区间内必须得是连续导数,这个连续导数说的是不是这个导数得是连续的?

2021-04-27知识2

要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线//导数有曲线的情况吗? 要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线.正确.曲线上任意一点都可导的含义是:左导数、右导数存在且相等,还等于该点的导数值.因此导函数是连续光滑的:比如:y=x^3,y'=3x^2 表明y(x)处处可导,y'(x)处处连续光滑.另外还看出:导函数 y'(x)=3x^2 还是一条曲线.此外举一例:y=|x|即绝对值函数,它在 x=0 点处,y(x)虽连续但不可导.原因是:x=0 时左(-1)、右(+1)导数不相等,y'(x)在x=0处不连续,不光滑 或出现间断.

光滑的曲线一定有导数嘛?不光滑的曲线折点一定不可导嘛?我发现三小时做一套数一难度很大,基本做不完,你们呢?[] 若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.做不完没关系,正确率最重要.查看原帖>;>;

越是高阶可导函数曲线越是光滑. 存在处处连续但处处不可导的函数. 这 分开来看。第一种是显然,第二种函数已经被构造出来了(处处连续处处不可导)

#光滑曲线是至少几阶可导

随机阅读

qrcode
访问手机版