纳米材料具有哪些特性?因为纳米材料集中了小尺寸、结构复杂和相互作用强等特点,用纳米材料做成的物质,可能会产生我们想像不到的新的物理和化学现象。。
超顺磁效应的反铁磁耦合,锁定存储位 为克服超顺磁效应的障碍,研究人员找到了一些办法,其中最具代表性的技术是IBM的AFC。(Anti Ferro_magnetically Coupled,反铁磁耦合)和富士通的SFM(Synthetic Ferro Media,合成铁介质),它们虽然名称不同,原理则基本相同,都是通过使用多层磁体结构来稳定磁记录信息的技术。下面简单介绍一下AFC技术的实现原理。普通磁盘的磁性涂层只有一层,而使用AFC技术,将磁性材料制成多层结构,除记录层以外,再使用稳定层,并且在记录层和稳定层之间增加一个钌层(Ru layer)。钌(Ru)元素属铂族金属,为稀有金属,价格十分昂贵,正因为如此,IBM才称它为“仙尘”(Pixie Dust),AFC也因此成为一个价格高昂的技术。钌元素具有反铁磁性,它能使相邻两层之间的磁场方向相反。当写磁盘时,磁头所产生的磁场不仅可以在最上层产生小磁极,由于钌层的存在,写电流所产生的磁场还穿过钌层使稳定层磁化,并使稳定层与记录层磁体极性相反。稳定层与记录层之间因磁场反向,异性相吸而相互锁定,从而实现记录层磁场的稳定。传统介质出现超磁现象的线密度为200Gbpsi,而使用AFC介质后出现超磁现象的线可以提高到达800Gbpsi。因此,AFC介质的出现再次将磁存储密度的极限向后推移。
超顺磁效应的超顺磁效应概述 自1956年IBM推出RAMAC以来,硬盘的存储密度从当初200bits/in2提升到现在的100Gbits/in2,整整提高了5千万倍!但是,由于存储位变得越来越小,会出现超顺磁性效应,热扰动会降低信号强度,甚至导致存储失效。