ZKX's LAB

二次指数平滑法的优缺点

2020-07-16知识154
简述指数平滑法的特点 指数平滑法兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数.简单来说,就是越久远的数据,权数越小,但不为0.移动平均法则不考虑较远期的数据. 什么是指数平滑法? 指数平滑法实际上是一种2113特殊的加5261权移动平均法。指数平滑4102法主要运用于生1653产预测,也可用于中短期经济发展趋势预测。在所有的预测方法中,指数平滑法是应用最广泛的一种。简单的全期平均法是平等利用时间序列的所有过去的数据。指数平滑法在移动平均法的基础上发展起来的时间序列分析预测方法。通过计算指数平滑值,并配合一定的时间序列预测模型,对现象的未来进行预测。其原理是任意周期的指数平滑值是实际观测值和上一周期指数平滑值的加权平均值。扩展资料指数平滑法可分为第一指数平滑法、第二指数平滑法和第三指数平滑法。当时间序列没有明显的趋势变化时,可以用指数平滑法进行预测。二次指数平滑法适用于具有线性趋势的时间序列。三次指数平滑预测是一种基于二次平滑的再平滑方法。指数平滑法的特点是可以加强观测期近期观测值对预测值的影响,不同时间观测值的权重不同,从而增加近期观测值的权重,使预测值能够反映市场的实际变化很快,观察值给出的权重可以按比例缩放,因此可以采用不同的A值来改变权重的变化率。参考资料来源:百度百科-指数平滑法 简述指数平滑法的特点 指数平滑兼容全期平均移平均所舍弃数据仅给予逐渐减弱影响程度即随着数据远离赋予逐渐收敛零权数 简单说越久远数据权数越0移平均则考虑较远期数据 平滑指数法的特点及优缺点? 平滑指数法的特点:简单的全期平均法知是对时间数列的过去数据一个不漏地全部加以同等利用;移动平均法则不考虑较远期的数据,并在加权移动平均法中给予近期资料更大的权重;而指数平滑法则兼容了全期平均和移动平均所长,不舍道弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零的权数。平滑指数法的优缺点: 1、优点:所需数据资料少,就可以预测出来所需要的结果,指数内平滑法是在移动平均法基础上发展起来的一种时间序列分析预测法,兼容了全期平均和移动平均所长,不舍弃过去的数据,但是仅给予逐渐减弱的影响程度,即随着数据的远离,赋予逐渐收敛为零容的权数是通过计算指数平滑值,配合一定的时间序列预测模型对现象的未来进行预测。2、缺点:赋予远期较小的比重,近期较大的比重,所以只能进行短期预测。 ()的主要优点是简单易行,容易掌握。A.指数平滑法 B.简单移动平均法 C.趋势外推 参考答案:B 指数平滑法的基本公式 指数平滑法计算公式:St=aYt-1+(1-a)St-1 指数平滑法实际上是一种特殊的加权移动平均法。其预测公式为:yt+1'=ayt+(1-a)yt' 式中,yt+1'-t+1期的预测值,即本期(t期)的... 在何种情况下,宜采用线性二次移动平均法或线性二次指数平滑法? 如果时间序列具有明显的线性变化趋势,则不宜采用一次移动平均法及一次指数平滑法来预测,宜采用线性二次移动平均法或线性二次指数平滑法进行预测。 如何用指数平滑法预测销售额 1.可以根据预测公式进行2113计算据平滑5261次数4102不同,指数平滑法分为:一次指数平1653滑法、二次指数平滑法和三次指数平滑法等。(一)一次指数平滑法当时间数列无明显的趋势变化,可用一次指数平滑预测。其预测公式为: yt+1'=ayt+(1-a)yt' 式中, yt+1'-t+1期的预测值,即本期(t期)的平滑值St;yt-t期的实际值;yt'-t期的预测值,即上期的平滑值St-1。该公式又可以写作:yt+1'=yt'+a(yt-yt')。可见,下期预测值又是本期预测值与以a为折扣的本期实际值与预测值误差之和。(二)二次指数平滑预测二次指数平滑是对一次指数平滑的再平滑。它适用于具线性趋势的时间数列。其预测公式为: yt+m=(2+am/(1-a))yt'-(1+am/(1-a))yt=(2yt'-yt)+m(yt'-yt)a/(1-a) 式中,yt=ayt-1'+(1-a)yt-1 显然,二次指数平滑是一直线方程,其截距为:(2yt'-yt),斜率为:(yt'-yt)a/(1-a),自变量为预测天数。(三)三次指数平滑预测三次指数平滑预测是二次平滑基础上的再平滑。其预测公式是: yt+m=(3yt'-3yt+yt)+[(6-5a)yt'-(10-8a)yt+(4-3a)yt]*am/2(1-a)2+(yt'-2yt+yt')*a2m2/2(1-a)2 式中,yt=ayt-1+(1-a)yt-1 它们的基本思想都是:预测值是以前观测值的加权和,且对不同的数据... 统计学:移动平均法,指数平滑法,直线趋势方程拟合法的区别与联系。 移动平均法的特点 1、对原序列有修匀或平滑的作用。时距项数K越大,对 数列的修匀作用越强 2、移动平均项数K为偶数时,需移正平均 3、平均时距项数K与季节变动长度一致才能消除季节变动;时距项数K和周期一致才能消除周期波动。4、移动平均会使原序列失去部分信息,当K为奇数时首尾各减(K-1)/2,项偶数时各减K/2项,平均项数K越大,失去的信息越多。指数平滑法的特点通过指数平滑值消除不规则变动,揭示(预测)现象基本趋势。对第t期趋势估计值与第t期实际值的误差由两部分组成:不规则随机误差现象从第t-1期到第t期的实质性变化合理估计趋势值要求剔除不规则随机误差,反映实质性变化。误差中属于现象实质性变化部分的比例由平滑系数α决定: α的值越大,误差中现象实质性变化的比例越大 α的值取得越小,误差中不规则随机误差所占比例越大 指数平滑法优缺点及适应范围 指数平滑预测法的2113优点:对不同时间的数据的非等权处5261理较符合实际情况4102。实用中仅需选择一个模1653型参数,即可进行预测,简便易行。具有适应性,也就是说预测模型能自动识别数据模式的变化而加以调整。指数平滑预测法的缺点:对数据的转折点缺乏鉴别能力,但这一点可通过调查预测法或专家预测法加以弥补。长期预测的效果较差,故多用于短期预测。适应范围指数平滑法进一步加强了观察期近期观察值对预测值的作用,对不同时间的观察值所赋予的权数不等,从而加大了近期观察值的权数,使预测值能够迅速反映市场实际的变化。权数之间按等比级数减少,此级数之首项为平滑常数a,公比为(1-a)。指数平滑法对于观察值所赋予的权数有伸缩性,可以取不同的a值以改变权数的变化速率。如a取小值,则权数变化较迅速,观察值的新近变化趋势较能迅速反映于指数移动平均值中。因此,运用指数平滑法,可以选择不同的a值来调节时间序列观察值的均匀程度(即趋势变化的平稳程度)。扩展资料指数平滑法的计算中,关键是α的取值大小,但α的取值又容易受主观影响,因此合理确定α的取值方法十分重要,如果数据波动较大,α值应取大一些,可以增加近期数据对预测结果的影响。...

#指数平滑法#移动平均法

随机阅读

qrcode
访问手机版