怎么确定质心的位置 质心不一定非要在物体上,比如说呼啦圈的质心就在圆心处.质心是一种近似处理的概念.为了计算的某种方便,比如说所考虑的物体是做刚性无旋转运动,就是说每时刻物体上的每个点所做的运动情况都一样,没有相对运动,我们就可以将物体看成一个点,物体的质量与运动都可以用这个点表示,这个点就是质心.你说的那个质心也是在物体外部,可以用公式求的,这里不再赘述.你那么求算是对的,但是如果绳子不是匀质的,就得用微积分求了
关于大学物理:为什么质量连续分布的物体当做质点系,求质心时就要把求和改为积分? 我是大一新生,对于物理书上关于质心这方面的解释不是很理解。详细问题如下:质心位失公式不是一个求和…
什么叫质点系,质心系?还有啊,柯尼希定理是什么,拜托举个例子说明它怎么用 质点系:力学的基本概念之一。是指包含两个或两个以上的质点的力学系统统称。质点系内各质点不仅受到外界物体对质点系的作用力,而且还受到质点系内各质点之间的相互作用力。外力和内力[1]的区分取决于质点系的选取。如以太阳系为质点系,则太阳与各行星之间的万有引力是内力,而太阳系内的行星与不属于太阳系的天体之间的引力就是外力。受外力作用和在运动状态变化时都不变形的物体称为刚体。刚体、弹性体、流体都可看作为质点系。质点系是空间质点的集合,是一个系统.而质点系是是一个参考系,是相对系统质心静止的参考系.它们是两个截然不同的概念,不要混淆.柯尼希定理(Konig's theorem)柯尼希定理(Konig's theorem)是质点系运动学中的一个基本定理。其文字表述是:质点系的总动能等于全部质量集中在质心时质心的动能,加上各质点相对于质心平动坐标系运动所具有的动能。数学表述为:T=1/2(∑Mi)*Vc^2+1/2∑(Mi*Vi^2)/小写字母为下标,如Mi中,i为M的下标 式中:T为质点系的总动能,Mi为质点系各质点(编号为i的质点)的质量,Vc为质心速度,Vi为各质点相对质心的速度。柯尼希定理表明,质点组的动能,等于假想质心所具有的动能和各个质点对质心动能之和