ZKX's LAB

气态氢化物的稳定性如何比较 气态氢化物稳定性 特例

2021-04-26知识9

简单气态氢化物的热稳定性和什么有关 气态氢化物2113的热稳定性:元素的5261非金属性越强,形成的气态氢化物就越稳4102定。同主族1653的非金属元素,从上到下,随核电荷数的增加,非金属性渐弱,气态氢化物的稳定性渐弱;同周期的非金属元素,从左到右,随核电荷数的增加,非金属性渐强,气态氢化物的稳定性渐强。同周期元素的气态氢化物(自左向右)非金属与氢气化合越来越容易;气态氢化物的稳定性逐渐增强;气态氢化物的还原性逐渐减弱。同主族元素的气态氢化物(自上向下)与氢气化合越来越难;氢化物的稳定性逐渐减弱;氢化物的还原性逐渐增强;气态氢化物水溶液的酸性逐渐增强(如HF)。扩展资料1、常见的气态氢化物中CH4、NH3、H2O、HF为10电子微粒,HCl、H2S、PH3、SiH4为18电子微粒。2、常见气态氢化物的典型结构与分子极性。①HCl、HF等直线型的极性分子;②H2O、H2S等平面“V”构型的极性分子;③NH3、PH3等三角锥型结构的极性分子;④CH4、SiH4等正四面体型的非极性分子。3、氢化物中HF、H2O、NH3其分子之间可形成氢键、在熔沸点的变化上异常。4、同周期元素气态氢化物中,H-R(R为非金属元素)的键长逐渐减小,同主族元素气态氢化物中,H-R键长逐渐增大。参考资料来源:-气态。

气态氢化物的稳定性是什么 所谓非62616964757a686964616fe59b9ee7ad9431333431353339金属性就是氧化性,原子得电子的能力,也就是原子与氢原子的结合能力,结合越精密,稳定性越强对于主族元素来说,同周期元素随着原子序数的递增,原子核电荷数逐渐增大,而电子层数却没有变化,因此原子核对核外电子的引力逐渐增强,随原子半径逐渐减小,原子得电子能力增加,元素非金属性逐渐增大。例如:对于第三周期元素的非金属性nas>;p>;si。同主族元素,随着原子序数的递增,电子层逐渐增大,原子半径明显增大,原子核对最外层电子的引力逐渐减小,元素的原子失电子能力逐渐增强,得电子能力逐渐减弱,所以元素的非金属性逐渐减弱。例如:第一主族元素的金属性hcl>;br>;i。综合以上两种情况,可以作出简明的结论:在元素周期表中,越向左、向下方,元素金属性越强,金属性最强的金属是cs;越向右、向上方,元素的非金属越强,非金属性最强的元素是f。例如:金属性k>;na>;mg,非金属性o>;s>;p。非金属性的比较规律:1、由元素原子的氧化性判断:一般情况下,氧化性越强,对应非金属性越强。2、由单质和酸或者和水的反应程度判断:反应越剧烈,非金属性越强。3、由对应氢化物的稳定性判断:氢化物越稳定,非。

气态氢化物的稳定性指热稳定性吗? 该如何判断其稳定性? 气态氢化物的2113稳定性是指气态氢化物受热是否易5261于分解4102的性质。变化规律如下:同周期1653元素,从左到右,元素的气态氢化物的稳定性逐渐增强;同主族元素,从上到下,元素的气态氢化物的稳定性逐渐减弱。常见的例子有气态氢化物的稳定性。其稳定性大小规律是:元素的非金属性越强,气态氢化物越稳定;在元素周期表中,从上到下,气态氢化物的稳定性逐渐减弱,从左到右,气态氢化物的稳定性逐渐增强。碳酸及其盐的稳定性。其稳定性大小规律是:正盐的稳定性>酸式盐的稳定性>铵盐的稳定性>碳酸,活泼金属的碳酸盐>较不活泼的金属的碳酸盐,碳酸盐的稳定性硅酸盐。卤素含氧酸的稳定性。规律是:低价含氧酸高价含氧酸。卤化银对光的稳定性。规律是:氟化银>氯化银>溴化银>碘化银。碱的稳定性。其稳定性大小规律是:金属越活泼,其对应的碱越稳定。碳酸钠晶体在干燥的空气中不稳定,易风化。浓硝酸、次氯酸不稳定,见光、受热易分解。扩展资料分子中化学键的稳定性,另一种是说明其化学活泼性,如某物质化学性质稳定。一般规律是:分子中化学键的键能越大,越难发生反应。如硅的化学性质稳定,常温下不易与其它物质反应。氮气分子中键能大,化学性质。

#气态氢化物稳定性 特例#气态氢化物稳定性怎么比较#气态氢化物稳定性#气态氢化物稳定性比较

随机阅读

qrcode
访问手机版