三维坐标系中如何确定坐标? 三维坐标系中一般2113用:1、最基本笛卡尔直角5261坐标系(x,y,z)2、球4102坐标系(r,φ,θ),r是点1653到原点距离,φ为从正z轴自x轴按逆时针方向转到点与原点连线在xy平面内投影所转过的角,θ为点与原点连线与z轴正向的夹角。3、柱坐标系(r、φ、z),r,φ与球坐标系一样,z是点的纵坐标。在三维坐标系中,Z轴的正轴方向是根据右手定则确定的。右手定则也决定三维空间中任一坐标轴的正旋转方向。要标注X、Y和Z轴的正轴方向,就将右手背对着屏幕放置,拇指即指向X轴的正方向。伸出食指和中指,如右图所示,食指指向Y轴的正方向,中指所指示的方向即是Z轴的正方向。扩展资料:相交于原点的两条数轴,构成了平面放射坐标系。如两条数轴上的度量单位相等,则称此放射坐标系为笛卡尔坐标系。两条数轴互相垂直的笛卡尔坐标系,称为笛卡尔直角坐标系,否则称为笛卡尔斜角坐标系。三维笛卡尔坐标(X,Y,Z)是在三维笛卡尔坐标系下的点的表达式,其中,x,y,z分别是拥有共同的零点且彼此相互正交的x轴,y轴,z轴的坐标值。球面坐标系由到原点的距离、方位角、仰角三个维度构成。球面坐标(ρ,θ,φ)是球面坐标系上的点的表达式。设P(x,y,z)为空间内一点。
三维坐标系中两点式求直线方程的详细解释 分析如下:1、空间直线的两点式:(类似于平面坐标系中的两点式)(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1)代入可得版2、。
如果是三维坐标系,怎么求直线方程? 是含有xyz的方程。