求助,推导圆柱坐标下应力平衡微分方程,要求详细推导,谢谢大神 如此,
怎么求圆的极坐标方程?比如给定 圆心为(ρ,θ), 圆心为 r, 怎么求这个圆的极坐标方程? 圆的极坐标百公式:2113ρ2=x2+y2,x=ρcosθ,y=ρsinθ tanθ=y/x,(5261x不为0)1、如果半径为R的圆4102的圆心在直角坐标1653的x=R,y=0点,即(R,0),也就是极坐标的ρ=R,θ=0,即(R,0)点:那么该圆的极坐标方程为度:ρ=2Rcosθ。2、如果圆心在x=R,y=R,或在极坐标的(√2 R,π/4),该圆的极坐标方程为:ρ^2-2Rρ(sinθ+cosθ)+R^2=0。3、如果圆心在x=0,y=R,该圆的极坐标方程为:ρ=2Rsinθ。4、圆心在极坐标原点问:ρ=R(θ任意)。扩展资料极坐标系的意义(1)用于定位和导航。极坐标通常被用于导航,作为旅行的目的地或方向可以作为从所考虑的物体的距离和角度。例如,飞机使用极坐标的一个略加修改的版本进行导航。这个系统中是一般的用于导航任何种类中的一个系统,在0°射线一般被称为航向360,并且角度是以顺时针方向继续,而不是逆时针方向,如同在数学系统那样。航向360对应地磁北极,而航向90,180,和270分别对应于磁东,南,西。因此,一架飞机向正东方向上航行5海里将是在航向90(空中交通管制读作090)上航行5个单位。(2)有些几何轨迹问题如果用极坐标法处理,它的方程比用直角坐标法来得简单,描图也较方便。1694年,J.贝努利利用极坐标。
《流体力学》(柱坐标系和求坐标系下)连续方程推导的巧方法 最低0.27元开通文库会员,查看完整内容>;原发布者:shiningboy云遥《流体力学》连续方程推导的巧方法施春华,高庆九,李忠贤(南京信息工程大学大气科学学院,江苏南京 210044)摘要:针对柱坐标系和球坐标系下《流体力学》中连续方程形式复杂、理解不便的特点,采用欧拉e799bee5baa6e79fa5e98193e4b893e5b19e31333433623766控制体方法,把“质量通量”整体作为一物理量,从而巧妙地推导了这两类连续方程,该过程物理意义明确、数学算法简单,有助于学生理解。关键词:连续方程;柱坐标系;球坐标系在大学《流体力学》教学中,连续方程是最基本的内容之一,在很多相关专业课程中得到广泛应用。相对而言,在直角坐标系中的连续方程形式简单,也易于理解,但在柱坐标系和球坐标系中,连续方程的形式却相对复杂,理解相对困难。目前,很多参考书[123]对于后两类连续方程要么没有给出具体推导,要么推导过程较为复杂,使数理基础较薄弱的学生难以理解,在此,笔者结合教学中的实际经验,演示柱坐标系和球坐标系下一种物理意义明确、数学理解简单的连续方程的推导过程。1 连续方程的一般算子形式流体运动的连续方程,是表示流体运动和其质量分布的关系式。在拉格朗日方法中,某流体块在运动时其体积和形状尽管可。