ZKX's LAB

不是光滑的曲线可导么 请问什么是光滑曲线?

2021-04-26知识6

在数学中,可导函数的图像一定光滑吗? 函数可导一定是连续的,但是不一定光滑,光滑函数在数学中特指无穷可导的函数。

要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线//导数有曲线的情况吗? 要是曲线上任一一点都可导的话那么这条曲线就是光滑不间断的曲线.正确.曲线上任意一点都可导的含义是:左导数、右导数存在且相等,还等于该点的导数值.因此导函数是连续光滑的:比如:y=x^3,y'=3x^2 表明y(x)处处可导,y'(x)处处连续光滑.另外还看出:导函数 y'(x)=3x^2 还是一条曲线.此外举一例:y=|x|即绝对值函数,它在 x=0 点处,y(x)虽连续但不可导.原因是:x=0 时左(-1)、右(+1)导数不相等,y'(x)在x=0处不连续,不光滑 或出现间断.

请问什么是光滑曲线? 你应该是高中生吧?各个领域的光滑曲线解释不一样.高等数学微积分这块的定义是:若函数f(x)在区间(a,b)内具有一阶连续导数,则其图形为一条处处有切线的曲线,且切线随切点的移动而连续转动,这样的曲线称为光滑曲线.高中生的话可以理解为曲线每一点都存在切线.不是任意曲线都存在切线,是光滑曲线才每一点都存在切线.这涉及到曲线的定义.高中接触到的曲线都是光滑的,所以在你看来都是任一点都是有切线的.到以后你会慢慢发现的.切点的移动切线不停转动.就是切点慢慢变动,切线斜率慢慢变大或者变小.比如x的平方这个函数,在0的右边,从0开始,切线斜率为0,越往左,斜率越大,角度越大,这样就是转动.如果你是大学生的话可以给你举个例子.f(x)=x^2*sin(1/x),f(0)=0.f处处可导,但导数在0点不连续.换句话说,曲线(x,f(x))在原点不光滑.

#不是光滑的曲线可导么

随机阅读

qrcode
访问手机版