ZKX's LAB

经济皇冠上的明珠 3.你认为“经济学是社会科学皇冠上最璀璨的那颗明珠”,这个说法是否正确,为什?

2021-04-26知识4

数学皇冠上的明珠指的是什么 “数学王2113冠上的明珠”指的是5261哥德巴赫猜想。哥德巴赫猜想:1742年6月7日,德4102国数学家哥德巴1653赫在写给著名数学家欧拉的一封信中,提出了一个大胆的猜想:任何不小于3的奇数,都可以是三个质数之和(如:7=2+2+3,当时1仍属于质数)。同年,6月30日,欧拉在回信中提出了另一个版本的哥德巴赫猜想:任何偶数,都可以是两个质数之和(如:4=2+2。当时1仍属于质数)。这就是数学史上著名的“哥德巴赫猜想”。显然,前者是后者的推论。因此,只需证明后者就能证明前者。所以称前者为弱哥德巴赫猜想(已被证明),后者为强哥德巴赫猜想。由于现在1已经不归为质数,所以这两个猜想分别变为:任何不小于7的奇数,都可以写成三个质数之和的形式;任何不小于4的偶数,都可以写成两个质数之和的形式。扩展资料:哥德巴赫猜想证明误区:研究哥德巴赫猜想的四个途径分别是:殆素数,例外集合,小变量的三素数定理,以及几乎哥德巴赫问题。殆素数就是素因子个数不多的正整数。现设N是偶数,虽然不能证明N是两个素数之和,但足以证明它能够写成两个殆素数的和,即N=A+B,其中A和B是素因子个数都不太多殆素数。用“a+b”来表示如下命题:每个大偶数N都可表为A+B,。

数学皇冠上的明珠是是指什么 陈景润证明的叫歌德巴赫猜想.并不是证明所谓的1+1为什么等于2.当年歌德巴赫在给大数学家欧拉的一封信中说,他认为任何一个大于6的偶数都可以写成两个质数的和,但他既无法否定这个命题,也无法证明它是正确的.欧拉也无法证明.这“两个质数的和”简写起来就是“1+1”.几百年过去了,一直没有人能够证明歌德巴赫猜想,包括陈景润,他只是把证明向前推进了一大步,但还是没有完全证明.哥德巴赫猜想是数学皇冠上的明珠

为什么陈景润被说是摘取了数学皇冠的明珠? 中国有一千个陈景润就了不得(邓小平)陈景润,数学家,中国科学院院士。1933年5月22日生于福建福州。1953 年毕业于厦门大学数学系。1957 年进入中国科学院数学研究所并在华罗庚教授 指导下从事数论方面的研究。历任中国科学院 数学研究所研究员、所学术委员会委员兼贵阳民族学院、河南大学、青岛大学、华中工学院、福建师范大学等校教授,国家科委数学学科组成员,《数学季刊》主编等职。主要从事解析数论方面的研究,并在哥德巴赫猜想研究方面取得国际领先的成果。这一成果国际上誉为“陈氏定理”,受到广泛引用。这项工作,使之与王元教授、潘承洞教授共同获得 1978 年国家自然科学奖一等奖。其后对上述定理又作了改进,并于1979年初完成论文《算术级数中的最小素数》,将最小素数从原有的80推进到16,受到国际数学界好评。对组合数学与现代经济管理、科学实验、尖端技术、人类生活密切关系等问题也作了研究。发表研究论文 70 余篇,并有《数学趣味谈》、《组合数学》等著作。实际上陈景润证明的不是哥德巴赫猜想陈景润与邵品宗合著的【哥德巴赫猜想】第118页(辽宁教育出版社)写道:陈景润定理的“1+1”结果,通俗地讲是指:对于任何一个大偶数N,那么总可以。

#经济皇冠上的明珠

随机阅读

qrcode
访问手机版