四棱锥如何求其外接球的半径???? 答:四棱锥与四棱锥不一2113样;有正四棱锥、直四5261棱锥,还有普通的四棱锥(非正、非直4102的1653四棱锥);尽管边长一样,它们的外接球体的半径是不一样的。此题按照正四棱锥来计算。由于正四棱锥的对称性,决定了圆锥的高,于外接圆的直径共线。依题意,圆锥底面的圆的弦长为2√2;设外接球半径为r,见下图:r^2=(r-1)^2+(2√2/2)^2;即:r^2=r^2-2r+1+2=0;2r=3;r=3/2=1又1/2。
正四棱锥外接球半径 正四棱锥有8条棱,棱长为2113a,底边是正5261方形,侧面是正三角形。4102如果有一个外接球,那么1653它的球心到正四棱锥5个顶点的距离一定相等,且都是r。可想而知,这个球心在正四棱锥底面的投影一定是在正方形的中心,(因为要对称)。话分两头说,这个中心和顶点的连线恰是正四棱锥的高h,而且,所谓的球心也一定在这条高上。那个中心(正方形底面的中心)到底面4个顶点的距离均是(√2)a/2,棱长为a,那么和高h组成的直角三角形,可以算出高h=√{a2-[(√2)a/2]2}=√(a2/2)=(√2)a/2。现在,球心到顶点的距离是r,在刚才的解析的那个直角三角形中,球心把高h那条直角边分成两份,球心到底面的距离l=h-r=(√2)a/2-r,球心、正四棱锥底面的顶点以及底面的中心组成的三角形,斜边长为r(球心到四棱锥底面顶点的距离),直角边分别为(√2)a/2和l=(√2)a/2-r,勾股定理有:r2=[(√2)a/2]2+[(√2)a/2-r]2r2=a2/2+a2/2-(√2)ar+r2a2-(√2)ar=0a≠0,∴a-(√2)r=0,r=(√2)a/2(这个结果说明正四棱锥外接圆的球心就是底面的中心。现在a=3√2,即r=3。
正四棱锥的外接球半径怎么求 画个图自己推啦