氢原子光谱的光谱线公式 1885年瑞士物理学家J.巴耳末首先把上述光谱用经验公式:λ=Bn2/(n2-22)(n=3,4,5,·)表示出来,式中B为一常数。这组谱线称为巴耳末线系。当n→时,λ→B,为这个线系的极限,这时邻近二谱线的波长之差趋于零。1890年J.里德伯把巴耳末公式简化为:1/λ=RH(1/22-1/n2)(n=3,4,5,·)式中RH称为氢原子里德伯常数,其值为(1.096775854±0.000000083)×107m-1。后来又相继发现了氢原子的其他谱线系,都可用类似的公式表示。波长的倒数称波数,单位是m-1,氢原子光谱的各谱线系的波数可用一个普遍公式表示:σ=RH(1/m2-1/n2)对于一个已知线系,m为一定值,而n为比m大的一系列整数。此式称为广义巴耳末公式。氢原子光谱现已命名的六个线系如下:莱曼系 m=1,n=2,3,4,·紫外区 巴耳末系 m=2,n=3,4,5,·可见光区 帕邢系 m=3,n=4,5,6,·红外区 布拉开系 m=4,n=5,6,7,·近红外区 芬德系 m=5,n=6,7,8,·远红外区 汉弗莱系 m=6,n=7,8,9,·远红外区 广义巴耳末公式中,若令T(m)=RH/m2,T(n)=RH/n2,为光谱项,则该式可写成σ=T(m)-T(n)。氢原子任一光谱线的波数可表示为两光谱项之差的规律称为并合原则,又称里兹组合原则。对于核外只有一个电子的类氢原子(如He+,Li2+。
氢原子光谱Rh如何测量 基态是指氢原子唯一的7a686964616fe4b893e5b19e31333330363239一个电子在N=1的电子层即化学中的K层时的状态。这个时候电子所具有的能量是-13.6电子伏特。。
氢光谱是发光光谱还是吸收光谱 氢原子光谱容易观察的是发射光谱(不考虑超精细结构),但发射光谱和吸收光谱是相对应的,所以认为氢原子光谱是发射的或吸收的都一样.正如文中所说的,只是观察吸收光谱比较难罢了.