球坐标系中的梯度散度公式怎么推到过来的 http://wenku.baidu.com/link?url=bFSYlpg3Kzfdp2Ut5QN7s13c3nvaJrFRgwiLfZzZs3OEmfS4IIaBVlv0BiebL5WYEbU-kgyPAmolmBL5a9osdpU5HAWj_b1lwLyCJ7KjdPO
求直角坐标系转换为柱坐标系中的表达式和散度,需要过程 一、▽A=(i*d/dx+j*d/dy+k*d/dz)A=i*dA/dx+j*dA/dy+k*dA/dz这样标量场A通过▽的这个运算就形成了一个矢量场,该矢量场反应了标量场A的分布.这就是梯度。是个矢量。二、▽·A=(i*d/dx+j*d/dy+k*d/dz)·(Ax*i+Ay*j+Az*k)=dAx/dx+dAy/dy+dAz/dz这个是散度。是个标量。三、▽×A=(dAz/dy-dAy/dz)*i+(dAx/dz-dAz/dx)*j+(dAy/dx-dAx/dy)*k这个是旋度。是个矢量。由此可见:数量(标量)场的梯度与矢量场的散度和旋度可表示为:gradA=▽A,divA=▽·A,rotA=▽×A
如何由直角坐标系中散度公式推出柱坐标 根据运算规则即可推出: 根据运算规则即可推出:1、▽A=(i*d/dx+j*d/dy+k*d/dz)A=i*dA/dx+j*dA/dy+k*dA/dz 这样标量场A通过▽的这个运算就形成了一个矢量场,该矢量场反应了标。