电镀铜的历史沿革 BGA球脚之承焊铜垫内设微盲孔(Micro Viain Pad),不但可节省板面用地,而且一改旧有哑钤式(Dog Boning)层间通孔较长的间接互连(Interconnection),而成为直上直下较短的盲孔互连;既可减短线长与孔长而得以压制高频中的寄生噪讯外(Parasitics),又能避免了内层Gnd/Vcc大铜面遭到通孔的刺破,而使得归途(Return Path)之回轨免于受损,对于高频讯号完整性(Signal Integrity)总体方面的效益将会更好。然而此种做法在下游印刷锡膏与后续熔焊(Reflow)球脚时,众多垫内微盲孔中免不了会吸引若干锡膏的不当流入。此而负面效应;一则会因锡量流失而造成焊点(Solder Joint)强度的不足,二则可能会引发盲孔内锡膏助焊剂的气化而吹涨出讨厌的空洞(Voids),两者均使得焊点可靠度为之隐忧不已。而且设计者为了追求高频传输的品质起见,01年以前“1+4+1”增层一次的做法,又已逐渐改变为现行“2+2+2”增层二次更新的面貌。此种“增二式”的最新规矩,使得内层之传统双面板(core),只扮演了Vcc/Gnd等人铜面的参考角色而已;所有传输资料的讯号线(Signal Line),几乎都已全数布局在后续无玻纤(DK较低,讯号品质较好)的各次增层中。如此一来外层中某些必须接地或按电源的二阶盲孔,甚至还会坐落在。
氯化亚铁与双氧水反应方程 过氧化氢溶液得用酸酸化,加入盐酸酸化之后方程式:2FeCl?+H?O?+2HCl=2FeCl?+2H?O氯化亚铁溶于水、乙醇、乙酸,微溶于丙酮,不溶于乙醚。于空气中会有部分氧化变为草绿色。在空气中逐渐氧化成氯化铁。无水氯化亚铁为黄绿色吸湿性晶体,溶于水后形成浅绿色溶液。四水盐。加热至36.5℃时变为二水盐。扩展资料:在具有一定浓度的盐酸溶液中,逐渐加入一定量的铁屑进行反应。经冷却,过滤,在滤液中加入少许洗净的铁块,防止生成的氯化亚铁被氧化,蒸发滤液至出现结晶,趁热过滤,冷却结晶,固液分离,快速干燥制得。遇有机物、受热分解放出氧气和水,遇铬酸、高锰酸钾、金属、碳酸反应剧烈。为了防止分解,可以加入微量的稳定剂,如锡酸钠、焦磷酸钠等等。生物化学中,也常利用此法间接测定过氧化氢酶的活性。在血液中加入一定量的H?O?,由于过氧化氢酶能使过氧化氢分解,作用完后,在酸性条件下用标准KMnO?溶液滴定剩余的H?O?,就可以了解酶的活性。参考资料来源:—氯化亚铁参考资料来源:—过氧化氢
磷酸二氢钠与硝酸银怎么反应化学方程式具体怎么写 化学方程式:NaH?PO?+3AgNO?=Ag?PO?+NaNO?+2HNO?关键在于磷酸银不能大量纯在酸性环境中,也就是不会生成磷酸银沉淀,而磷酸银也是微溶于水,生成到饱和磷酸银就不反应了。这个反应是看比例的,因为磷酸二氢钠本身就不稳定,能生成磷酸和磷酸钠。硝酸银遇有机物变灰黑色,分解出银。纯硝酸银对光稳定,但由于一般的产品纯度不够,其水溶液和固体常被保存在棕色试剂瓶中。硝酸银加热至440℃时分解成银、氮气、氧气和二氧化氮。水溶液和乙醇溶液对石蕊呈中性反应,pH约为6。沸点 444℃(分解)。有氧化性。在有机物存在下,见光变灰色或灰黑色。硝酸银能与一系列试剂发生沉淀反应或配位反应(见配位化合物)。扩展资料:硝酸银是一个中强氧化剂,它可被许多中强或强还原剂还原成单质银。例如,肼N2H4和亚磷酸等都可以将AgNO3还原成金属银。若遇到氯离子,溴离子,碘离子等会发生反应生成不溶于水,不溶于硝酸的氯化银(白色沉淀),溴化银(淡黄色沉淀),碘化银(黄色沉淀)等。因此常被用于检验氯离子的存在。氯化银受光照射生成灰色溶液。氯化银可与氨水反应再度溶解,生成无色的二氨银(I)溶液。参考资料来源:—硝酸银参考资料来源:—。