在柱坐标系和球坐标系中,点乘,叉乘,哈密顿算子分别会变成什么形式 ▽A=(i*d/dx+j*d/dy+k*d/dz)A=i*dA/dx+j*dA/dy+k*dA/dz,标量场通过哈密顿算子2113运算5261就成了矢量场,该矢4102量场反应了1653标量场的分布。点乘运算▽·A=(i*d/dx+j*d/dy+k*d/dz)·(Ax*i+Ay*j+Az*k)=dAx/dx+dAy/dy+dAz/dz叉乘运算▽×A=(dAz/dy-dAy/dz)*i+(dAx/dz-dAz/dx)*j+(dAy/dx-dAx/dy)*k标量场的梯度与矢量场的散度、旋度计算公式:[梯度]:gradA=▽A;[散度]:divA=▽·A;[旋度]:rotA=▽×A.A—标量。
所谓的位置矢量是不是就是表示位置的矢量分量? 我也遇到了 类似问题.从这看懂了.说明图定义或解释:表示质点在空间的位置的矢量,叫做位置矢量.说明:①质点在参照系内选定坐标系中的位置矢量,是一根由坐标系原点指向质点所在位置的有向线段,如图的r.②对于直角坐标系,质点的位置矢量可用x、y、z来确定,其大小为|r|=根号下(x2+y2+z2).其方向的余弦分别为cosα=x/|r|cosβy/|r|cosγ=z/|r|.(如图)[1][2].
三维坐标的圆柱坐标 圆柱坐标(2113ρ,θ,z)是.圆柱坐标系上的点的表5261达式。设P(x,y,z)为4102空间内一点,1653则点P也可用这样三个有次序的数ρ,θ,z来确定,其中ρ为点P在xoy平面的投影M与原点的距离,θ为有向线段PO在xoy平面的投影MO与x轴正向所夹的角。圆柱坐标系和三维笛卡尔坐标系的点的坐标的对应关系是,x=ρcosθ,y=ρsinθ,z=z。