正四棱锥都有什么性质 1、正四棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);2、正四棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;3、正四棱锥的侧棱与底面所成的角都相等;4、正棱锥的侧面与底面所成的二面角都相等;5、正四棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h’,那么它的侧面积是 s=1/2ch。6、正四棱锥的各条侧棱相等;7、正四棱锥的侧面都是全等的等腰三角形;8、正四棱锥的对角面都是等腰三角形;9、正四棱锥的高、侧棱和侧棱在底面内的射影所组成的三角形,都是全等的直角三角形;扩展资料正四棱锥的特点:1、底面是正方形2、侧面为4个全等的等腰三角形且有公共顶点3、顶点在底面的投影是底面的中心。4、三角形的底边就是正方形的边。5、体积公式:1/3*底面积*棱锥的高。表面积公式:四个三角形和一个正方形面积的和。6、组成:四个三角形和一个四边形构成的。7、类型:空间封闭图形。8、正四棱锥的高、斜高和斜高在底面内的射影所组成的三角形,都是全等的直角三角形。9、正四棱锥的斜高都相等。10、正四棱锥的侧面和底面所成的二面角都。
在正四棱锥P-ABCD中,PA= 设正四棱锥的底面边长为a,则侧棱长为32a.由PM⊥BC,PM=22a.连接PG并延长与AD相交于N点则PN=22a,MN=AB=a,PM2+PN2=MN2,PM⊥PN,又PM⊥AD,PM⊥面PAD,在平面PAD中经过G点的任意一条直线都与PM垂直.故答案为无数.
在正四棱锥 30°如图,以 O 为原点建立空间直角坐标系 O-xyz.设 OD=SO=OA=OB=OC=a.则 A(a,0,0),B(0,a,0),C(-a,0,0),P.则=(2 a,0,0),=,(a,a,0),设平面 PAC 的一个法向量为 n,设 n=(x,y,z),则 解得 可取 n=(0,1,1),则cos〈,n〉=,〈,n〉=60°,直线 BC 与平面 PAC 所成的角为90°-60°=30°.