金红石二氧化钛 晶体结构分析 提问不明确。下面是在网上搜索的关于金红石型TiO2的一些基础知识。如果你想仔细分析TiO2的晶体结构,可以看看一些书籍,比如《结晶学与矿物学》。还有一个很好的网站,应该是在国内晶体学方面做得最好的:http://www.crystalstar.org/Index.html。金红石(Rutile)TiO2[晶体化学]常含Fe2+、Fe3+、Nb5+、Ta5+、Sn4+等类质同像混入物,有时含Cr3+或V3+。多为异价替代,常见方式有2Nb5+(Ta5+)+Fe2+—3Ti4+,Nb5+(Ta5+)+Fe2+—Ti4+Fe3+等。当Nb5+或Ta5+以1:1的方式替代Ti4+时,可能会导致晶格中的阳离子缺席。富铁变种称为铁金红石;富含Nb、Ta的变种,当Nb>;Ta时称铌铁金红石;Ta>;Nb时称钽铁金红石。[结构与形态]四方晶系,a0=0.458nm,c0=0.295nm;Z=2。金红石型结构,为AX2型化合物的典型结构。O2-作近似六方最紧密堆积,Ti4+填充其半数的八面体空隙。Ti4+占据晶胞的角顶和中心,Ti与O分别为6次和3次配位,[TiO6]八面体共棱联结成∥c轴的链,链间八面体共角顶。三种同质多像变体金红石、板钛矿、锐钛矿的结构都由[TiO6]八面体组成。所不同的是,在这三种结构中[TiO6]八面体分别共两棱、三棱和四棱。根据鲍林法则,配位多面体共棱、共面会降低结构的稳定性,因此,三。
直接带隙和间接带隙是怎么回事? 直接带隙指的是半导体的导带最小值与价带最大值对应k空间中同一位置,价带电子跃迁到导带不需要声子的参与,只需要吸收能量。间接带隙半导体材料导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。两者的区别是:直接带隙的半导体导带上电子是由价带受激发直接跃迁导致的,而间接带隙的半导体导带上的电子是由价带受激发跃迁至导带后还要有个弛豫的过程才能到导带底。这个过程中会有一部分能量以声子的形式浪费掉,从能量利用的角度上来说,直接带隙的半导体对光的利用率更好。ZnO具有直接带隙半导体材料的这种只需要吸收能量的特点,它是这种跃迁类型是由它这种材料本身决定的。样品的直接带隙和间接带隙是轨道理论判断的。扩展资料直接带隙半导体的重要性质:当价带电子往导带跃迁时,电子波矢不变,在能带图上即是竖直地跃迁,这就意味着电子在跃迁过程中,动量可保持不变—满足动量守恒定律。相反,如果导带电子下落到价带(即电子与空穴复合)时,也可以保持动量不变—直接复合,即电子与空穴只要一相遇就会发生复合(不。
如何确定半导体是直接带隙还是间接带隙的? 确定半导体是直接带隙还是间接带隙的可以用光致发光光谱。光效率很大的话差不多就是直接带隙,发光效率低的话就是间接带隙。直接带隙材料吸收光谱应该能比较明显地区分出本征吸收带和吸收边,变化相对较缓,而间接带隙材料比较陡峭。间接带隙半导体材料(如Si、Ge)导带最小值(导带底)和满带最大值在k空间中不同位置。形成半满能带不只需要吸收能量,还要改变动量。电子在k状态时的动量是(h/2pi)k,k不同,动量就不同,从一个状态到另一个必须改变动量。与之相对的直接带隙半导体则是电子在跃迁至导带时不需要改变动量。扩展资料:光致发光过程包括荧光发光和磷光发光。通常用于半导体检测和表征的光致发光光谱指的是光致荧光发光。光致发光特点:1、光致发光优点设备简单,无破坏性,对样品尺寸无严格要求;分辨率高,可做薄层和微区分析。2、光致发光缺点通常只能做定性分析,而不作定量分析;如果做低温测试,需要液氦降温,条件比较苛刻;不能反映出非辐射复合的深能级缺陷中心。参考资料来源:-光致发光光谱