如何将一般正态分布标准化 ^答:假设X~N(μ,σ^2),则Y=(X-μ)/σ~N(0,1).证明;因为X~N(μ,σ^2),所以P(x)=(2π)^(-1/2)*σ^(-1)*exp{[-(x-μ)^2]/(2σ^2)}.(注:F(y)为Y的分布函数,Fx(x)为X的分布函数)而 F(y)=P(Y≤y)=P((X-μ)/σ≤y)=P(X≤σy+μ)=Fx(σy+μ)所以 p(y)=F'(y)=F'x(σy+μ)*σ=P(σy+μ)*σ=[(2π)^(-1/2)]*e^[-(x^2)/2].从而,N(0,1).正态分布标准化的意义是可以方便计算,是一种统计学概念。原本的正态分布图形有高矮胖瘦不同的形态,实际上是积分变换的必然结果,就好比是:y=kx+b 直线,它不一定过原点的,但是通过变换就可以了:大Y=y-b;大X=kx;大Y=大X2.y=a*b 乘积,通过变换就可以变成加法运算:Ln(y)=Lna+Lnb3.y=ax2+bx+c 通过变换就可以变成标准形式:y=a(x+b/(2a))2+(c-b2/(4a))正态分布的标准化也只不过是“积分变换”而已,虽然高矮胖瘦不同的形态,但是 变量的 线性伸缩变换 并不改变其 量化特性,虽然标准化以后都变成期望是0,方差是1的 标准分布了,但这种 因变量 自变量的 依赖关系仍然存在,不用担心会“质变”。拓展资料:
正态分布的概念和特征 一、正态分布的概念由一般e69da5e887aa3231313335323631343130323136353331333433653965分布的频数表资料所绘制的直方图,可以看出,高峰位于中部,左右两侧大致对称。我们设想,如果观察例数逐渐增多,组段不断分细,直方图顶端的连线就会逐渐形成一条高峰位于中央(均数所在处),两侧逐渐降低且左右对称,不与横轴相交的光滑曲线。这条曲线称为频数曲线或频率曲线,近似于数学上的正态分布(normal distribution)。由于频率的总和为100%或1,故该曲线下横轴上的面积为100%或1。为了应用方便,常对正态分布变量X作变量变换。该变换使原来的正态分布转化为标准正态分布(standard normal distribution),亦称u分布。u被称为标准正态变量或标准正态离差(standard normal deviate)。实际工作中,常需要了解正态曲线下横轴上某一区间的面积占总面积的百分数,以便估计该区间的例数占总例数的百分数(频数分布)或观察值落在该区间的概率。正态曲线下一定区间的面积可以通过附表1求得。对于正态或近似正态分布的资料,已知均数和标准差,就可对其频数分布作出概约估计。正态分布也叫常态分布,是连续随机变量概率分布的一种,自然界、人类社会、心理和教育中大量。
正态分布的各种概念及公式之类的等等 1.正态分布若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号.其中μ、σ2 是两个不确定常数,是正态分布的参数,不同的、不同的 对应不同的正态分布.正态曲线呈钟型,两头低,中间高,左右对称,曲线与横轴间的面积总等于1.2.正态分布的特征服从正态分布的变量的频数分布由、完全决定.(1)是正态分布的位置参数,描述正态分布的集中趋势位置.正态分布以 为对称轴,左右完全对称.正态分布的均数、中位数、众数相同,均等于.(2)描述正态分布资料数据分布的离散程度,越大,数据分布越分散,越小,数据分布越集中.也称为是正态分布的形状参数,越大,曲线越扁平,反之,越小,曲线越瘦高.标准正态分布standard normal distribution1.标准正态分布是一种特殊的正态分布,标准正态分布的μ和σ2为0和1,通常用(或Z)表示服从标准正态分布的变量,记为 N(0,1).2.标准化变换:此变换有特性:若原分布服从正态分布,则Z=(x-μ)/σ N(0,1)就服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值.故该变换被称为标准化变换.3.标准正态分布表标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例.正态曲线下面积分布1。