氨基酸,多肽和蛋白质的区别与联系 一、多肽与氨基酸的区别结构不同:氨基酸是组成多肽和蛋白质的基本单位,两个或则两个以上氨基酸组成一个肽链,因此多肽的分子比氨基酸分子大。吸收不同:科学家的研究发现人体吸收蛋白质主要形式是小分子活性多肽片段和游离氨基酸。相对氨基酸的吸收,以多肽形式具有易吸收、主动吸收、优先吸收、完全吸收、可做为信使等特点。体内合成蛋白质:多肽在人体内合成蛋白质的利用率比氨基酸高,氨基酸合成蛋白质须要将氨基酸先合成为多肽短链,然后再装配成蛋白质。数量不同:人体内氨基酸只有20种,由于多肽肽链长度、结构有多种结构和变化,20种氨基酸能合成无数种多肽。功能不同:单一氨基酸的功能需要组合成多肽,才能表达出相应的功能,蛋白质的功能体现也是以活性多肽片段为基本功能单位。二、多肽与蛋白质的联系结构:将50个以上氨基酸构成的多肽链称为蛋白质,因此,多肽相对蛋白质比较具有分子量小、肽键的数目少、肽链短的特点;蛋白质的分子量大、肽键的数目多、肽链长、具有独特的三维立体结构。功能:蛋白质的生理功能主要由组成蛋白质的活性多肽片段来完成,蛋白质的功能即其中所含的特异性活性多肽片段的功能体现,因此科学家们称“肽是生命的统帅,生命。
稀土冶炼得到的氧化物超细粉末是怎么生产的?是变成氧化物后再研磨吗? 我的理解是把土土金属变成氧化物再研磨,是这样吗?这两天去了一些稀土企业参观,看到的稀土成品都是粉末…
气相沉淀是什么 气相沉积法化学气相沉积(CVD)是半导体工业中应用最为广泛的用来沉积多种材料的技术,包括大范围的绝缘材料,大多数金属材料和金属合金材料。从理论上来说,它是很简单的:两种或两种以上的气态原材料导入到一个反应室内,然后他们相互之间发生化学反应,形成一种新的材料,沉积到晶片表面上。淀积氮化硅膜(Si3N4)就是一个很好的例子,它是由硅烷和氮反应形成的。然而,实际上,反应室中的反应是很复杂的,有很多必须考虑的因素,沉积参数的变化范围是很宽的:反应室内的压力、晶片的温度、气体的流动速率、气体通过晶片的路程(如图所示)、气体的化学成份、一种气体相对于另一种气体的比率、反应的中间产品起的作用、以及是否需要其它反应室外的外部能量来源加速或诱发想得到的反应等。额外能量来源诸如等离子体能量,当然会产生一整套新变数,如离子与中性气流的比率,离子能和晶片上的射频偏压等。然后,考虑沉积薄膜中的变数:如在整个晶片内厚度的均匀性和在e68a84e8a2ade79fa5e9819331333238666237图形上的覆盖特性(后者指跨图形台阶的覆盖),薄膜的化学配比(化学成份和分布状态),结晶晶向和缺陷密度等。当然,沉积速率也是一个重要的因素,因为它决定着反应室。